862 resultados para Payload-based traffic classifiers.
Resumo:
The increasing practicality of large-scale flow capture makes it possible to conceive of traffic analysis methods that detect and identify a large and diverse set of anomalies. However the challenge of effectively analyzing this massive data source for anomaly diagnosis is as yet unmet. We argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveals both the presence and the structure of a wide range of anomalies. Using entropy as a summarization tool, we show that the analysis of feature distributions leads to significant advances on two fronts: (1) it enables highly sensitive detection of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it enables automatic classification of anomalies via unsupervised learning. We show that using feature distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can be used to automatically classify anomalies and to uncover new anomaly types. We validate our claims on data from two backbone networks (Abilene and Geant) and conclude that feature distributions show promise as a key element of a fairly general network anomaly diagnosis framework.
Resumo:
This paper formally defines the operational semantic for TRAFFIC, a specification language for flow composition applications proposed in BUCS-TR-2005-014, and presents a type system based on desired safety assurance. We provide proofs on reduction (weak-confluence, strong-normalization and unique normal form), on soundness and completeness of type system with respect to reduction, and on equivalence classes of flow specifications. Finally, we provide a pseudo-code listing of a syntax-directed type checking algorithm implementing rules of the type system capable of inferring the type of a closed flow specification.
Resumo:
Nearest neighbor search is commonly employed in face recognition but it does not scale well to large dataset sizes. A strategy to combine rejection classifiers into a cascade for face identification is proposed in this paper. A rejection classifier for a pair of classes is defined to reject at least one of the classes with high confidence. These rejection classifiers are able to share discriminants in feature space and at the same time have high confidence in the rejection decision. In the face identification problem, it is possible that a pair of known individual faces are very dissimilar. It is very unlikely that both of them are close to an unknown face in the feature space. Hence, only one of them needs to be considered. Using a cascade structure of rejection classifiers, the scope of nearest neighbor search can be reduced significantly. Experiments on Face Recognition Grand Challenge (FRGC) version 1 data demonstrate that the proposed method achieves significant speed up and an accuracy comparable with the brute force Nearest Neighbor method. In addition, a graph cut based clustering technique is employed to demonstrate that the pairwise separability of these rejection classifiers is capable of semantic grouping.
Resumo:
A common assumption made in traffic matrix (TM) modeling and estimation is independence of a packet's network ingress and egress. We argue that in real IP networks, this assumption should not and does not hold. The fact that most traffic consists of two-way exchanges of packets means that traffic streams flowing in opposite directions at any point in the network are not independent. In this paper we propose a model for traffic matrices based on independence of connections rather than packets. We argue that the independent connection (IC) model is more intuitive, and has a more direct connection to underlying network phenomena than the gravity model. To validate the IC model, we show that it fits real data better than the gravity model and that it works well as a prior in the TM estimation problem. We study the model's parameters empirically and identify useful stability properties. This justifies the use of the simpler versions of the model for TM applications. To illustrate the utility of the model we focus on two such applications: synthetic TM generation and TM estimation. To the best of our knowledge this is the first traffic matrix model that incorporates properties of bidirectional traffic.
Resumo:
Traffic policing and bandwidth management strategies at the User Network Interface (UNI) of an ATM network are investigated by simulation. The network is assumed to transport real time (RT) traffic like voice and video as well as non-real time (non-RT) data traffic. The proposed policing function, called the super leaky bucket (S-LB), is based on the leaky bucket (LB), but handles the three types of traffic differently according to their quality of service (QoS) requirements. Separate queues are maintained for RT and non-RT traffic. They are normally served alternately, but if the number of RT cells exceeds a threshold, it gets non-pre-emptive priority. Further increase of the RT queue causes low priority cells to be discarded. Non-RT cells are buffered and the sources are throttled back during periods of congestion. The simulations clearly demonstrate the advantages of the proposed strategy in providing improved levels of service (delay, jitter and loss) for all types of traffic.
Resumo:
Orthogonal frequency division multiplexing(OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.
Resumo:
Data identification is a key task for any Internet Service Provider (ISP) or network administrator. As port fluctuation and encryption become more common in P2P traffic wishing to avoid identification, new strategies must be developed to detect and classify such flows. This paper introduces a new method of separating P2P and standard web traffic that can be applied as part of a data mining process, based on the activity of the hosts on the network. Unlike other research, our method is aimed at classifying individual flows rather than just identifying P2P hosts or ports. Heuristics are analysed and a classification system proposed. The accuracy of the system is then tested using real network traffic from a core internet router showing over 99% accuracy in some cases. We expand on this proposed strategy to investigate its application to real-time, early classification problems. New proposals are made and the results of real-time experiments compared to those obtained in the data mining research. To the best of our knowledge this is the first research to use host based flow identification to determine a flows application within the early stages of the connection.
Resumo:
Despite the simultaneous progress of traffic modelling both on the macroscopic and microscopic front, recent works [E. Bourrel, J.B. Lessort, Mixing micro and macro representation of traffic flow: a hybrid model based on the LWR theory, Transport. Res. Rec. 1852 (2003) 193–200; D. Helbing, M. Treiber, Critical discussion of “synchronized flow”, Coop. Transport. Dyn. 1 (2002) 2.1–2.24; A. Hennecke, M. Treiber, D. Helbing, Macroscopic simulations of open systems and micro–macro link, in: D. Helbing, H.J. Herrmann, M. Schreckenberg, D.E. Wolf (Eds.), Traffic and Granular Flow ’99, Springer, Berlin, 2000, pp. 383–388] highlighted that one of the most promising way to simulate efficiently traffic flow on large road networks is a clever combination of both traffic representations: the hybrid modelling. Our focus in this paper is to propose two hybrid models for which the macroscopic (resp. mesoscopic) part is based on a class of second order model [A. Aw, M. Rascle, Resurection of second order models of traffic flow?, SIAM J. Appl. Math. 60 (2000) 916–938] whereas the microscopic part is a Follow-the Leader type model [D.C. Gazis, R. Herman, R.W. Rothery, Nonlinear follow-the-leader models of traffic flow, Oper. Res. 9 (1961) 545–567; R. Herman, I. Prigogine, Kinetic Theory of Vehicular Traffic, American Elsevier, New York, 1971]. For the first hybrid model, we define precisely the translation of boundary conditions at interfaces and for the second one we explain the synchronization processes. Furthermore, through some numerical simulations we show that the waves propagation is not disturbed and the mass is accurately conserved when passing from one traffic representation to another.
Resumo:
A key issue in the design of next generation Internet routers and switches will be provision of traffic manager (TM) functionality in the datapaths of their high speed switching fabrics. A new architecture that allows dynamic deployment of different TM functions is presented. By considering the processing requirements of operations such as policing and congestion, queuing, shaping and scheduling, a solution has been derived that is scalable with a consistent programmable interface. Programmability is achieved using a function computation unit which determines the action (e.g. drop, queue, remark, forward) based on the packet attribute information and a memory storage part. Results of a Xilinx Virtex-5 FPGA reference design are presented.
Resumo:
A queue manager (QM) is a core traffic management (TM) function used to provide per-flow queuing in access andmetro networks; however current designs have limited scalability. An on-demand QM (OD-QM) which is part of a new modular field-programmable gate-array (FPGA)-based TM is presented that dynamically maps active flows to the available physical resources; its scalability is derived from exploiting the observation that there are only a few hundred active flows in a high speed network. Simulations with real traffic show that it is a scalable, cost-effective approach that enhances per-flow queuing performance, thereby allowing per-flow QM without the need for extra external memory at speeds up to 10 Gbps. It utilizes 2.3%–16.3% of a Xilinx XC5VSX50t FPGA and works at 111 MHz.
Resumo:
This paper presents a lookup circuit with advanced memory techniques and algorithms that examines network packet headers at high throughput rates. Hardware solutions and test scenarios are introduced to evaluate the proposed approach. The experimental results show that the proposed lookup circuit is able to achieve at least 39 million packet header lookups per second, which facilitates the application of next-generation stateful packet classifications at beyond 20Gbps internet traffic throughput rates.
Resumo:
This paper reports laboratory experiments designed to study the impact of public information about past departure rates on congestion levels and travel costs. Our design is based on a discrete version of Arnott et al.'s (1990) bottleneck model. In all treatments, congestion occurs and the observed travel costs are quite similar to the predicted ones. Subjects' capacity to coordinate is not affected by the availability of public information on past departure rates, by the number of drivers or by the relative cost of delay. This seemingly absence of treatment effects is confirmed by our finding that a parameter-free reinforcement learning model best characterises individual behaviour.
Resumo:
Fixed and wireless networks are increasingly converging towards common connectivity with IP-based core networks. Providing effective end-to-end resource and QoS management in such complex heterogeneous converged network scenarios requires unified, adaptive and scalable solutions to integrate and co-ordinate diverse QoS mechanisms of different access technologies with IP-based QoS. Policy-Based Network Management (PBNM) is one approach that could be employed to address this challenge. Hence, a policy-based framework for end-to-end QoS management in converged networks, CNQF (Converged Networks QoS Management Framework) has been proposed within our project. In this paper, the CNQF architecture, a Java implementation of its prototype and experimental validation of key elements are discussed. We then present a fuzzy-based CNQF resource management approach and study the performance of our implementation with real traffic flows on an experimental testbed. The results demonstrate the efficacy of our resource-adaptive approach for practical PBNM systems
Resumo:
Policy-based network management (PBNM) paradigms provide an effective tool for end-to-end resource
management in converged next generation networks by enabling unified, adaptive and scalable solutions
that integrate and co-ordinate diverse resource management mechanisms associated with heterogeneous
access technologies. In our project, a PBNM framework for end-to-end QoS management in converged
networks is being developed. The framework consists of distributed functional entities managed within a
policy-based infrastructure to provide QoS and resource management in converged networks. Within any
QoS control framework, an effective admission control scheme is essential for maintaining the QoS of
flows present in the network. Measurement based admission control (MBAC) and parameter basedadmission control (PBAC) are two commonly used approaches. This paper presents the implementationand analysis of various measurement-based admission control schemes developed within a Java-based
prototype of our policy-based framework. The evaluation is made with real traffic flows on a Linux-based experimental testbed where the current prototype is deployed. Our results show that unlike with classic MBAC or PBAC only schemes, a hybrid approach that combines both methods can simultaneously result in improved admission control and network utilization efficiency
Resumo:
This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks’ QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network
management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the
prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.