936 resultados para Parametric sensitivity analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forest managers, stakeholders and investors want to be able to evaluate economic, environmental and social benefits in order to improve the outcomes of their decisions and enhance sustainable forest management. This research developed a spatial decision support system that provides: (1) an approach to identify the most beneficial locations for agroforestry projects based on the biophysical properties and evaluate its economic, social and environmental impact; (2) a tool to inform prospective investors and stakeholders of the potential and opportunities for integrated agroforestry management; (3) a simulation environment that enables evaluation via a dashboard with the opportunity to perform interactive sensitivity analysis for key parameters of the project; (4) a 3D interactive geographic visualization of the economic, environmental and social outcomes, which facilitate understanding and eases planning. Although the tool and methodology presented are generic, a case study was performed in East Kalimantan, Indonesia. For the whole study area, it was simulated the most suitable location for three different plantation schemes: monoculture of timber, a specific recipe (cassava, banana and sugar palm) and different recipes per geographic unit. The results indicate that a mixed cropping plantation scheme, with different recipes applied to the most suitable location returns higher economic, environmental and social benefits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The theme of this dissertation is the finite element method applied to mechanical structures. A new finite element program is developed that, besides executing different types of structural analysis, also allows the calculation of the derivatives of structural performances using the continuum method of design sensitivities analysis, with the purpose of allowing, in combination with the mathematical programming algorithms found in the commercial software MATLAB, to solve structural optimization problems. The program is called EFFECT – Efficient Finite Element Code. The object-oriented programming paradigm and specifically the C ++ programming language are used for program development. The main objective of this dissertation is to design EFFECT so that it can constitute, in this stage of development, the foundation for a program with analysis capacities similar to other open source finite element programs. In this first stage, 6 elements are implemented for linear analysis: 2-dimensional truss (Truss2D), 3-dimensional truss (Truss3D), 2-dimensional beam (Beam2D), 3-dimensional beam (Beam3D), triangular shell element (Shell3Node) and quadrilateral shell element (Shell4Node). The shell elements combine two distinct elements, one for simulating the membrane behavior and the other to simulate the plate bending behavior. The non-linear analysis capability is also developed, combining the corotational formulation with the Newton-Raphson iterative method, but at this stage is only avaiable to solve problems modeled with Beam2D elements subject to large displacements and rotations, called nonlinear geometric problems. The design sensitivity analysis capability is implemented in two elements, Truss2D and Beam2D, where are included the procedures and the analytic expressions for calculating derivatives of displacements, stress and volume performances with respect to 5 different design variables types. Finally, a set of test examples were created to validate the accuracy and consistency of the result obtained from EFFECT, by comparing them with results published in the literature or obtained with the ANSYS commercial finite element code.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on a structural safety assessment and performance evaluation of the upper choir of the Santa Maria de Belém Church in the Jerónimos monastery, Lisbon, one of the most important cultural heritage buildings in Portugal. The possibility of adding a new 20 t organ to the upper choir and its effects on the church structure's response are presented. A refined and a simplified finite-element model is developed to investigate the structure's performance under self-weight and seismic actions. A sensitivity analysis is performed to investigate the effect of masonry mechanical properties and rib cross-sections on the structural response, given the difficulty in accurately obtaining this information. The results show that the safety level of the structure is acceptable, even in the case of adding a heavy new organ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Programa Doutoral em Engenharia Industrial e de Sistemas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research aimed to establish tyre-road noise models by using a Data Mining approach that allowed to build a predictive model and assess the importance of the tested input variables. The data modelling took into account three learning algorithms and three metrics to define the best predictive model. The variables tested included basic properties of pavement surfaces, macrotexture, megatexture, and uneven- ness and, for the first time, damping. Also, the importance of those variables was measured by using a sensitivity analysis procedure. Two types of models were set: one with basic variables and another with complex variables, such as megatexture and damping, all as a function of vehicles speed. More detailed models were additionally set by the speed level. As a result, several models with very good tyre-road noise predictive capacity were achieved. The most relevant variables were Speed, Temperature, Aggregate size, Mean Profile Depth, and Damping, which had the highest importance, even though influenced by speed. Megatexture and IRI had the lowest importance. The applicability of the models developed in this work is relevant for trucks tyre-noise prediction, represented by the AVON V4 test tyre, at the early stage of road pavements use. Therefore, the obtained models are highly useful for the design of pavements and for noise prediction by road authorities and contractors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Projeto de mestrado em Gestão de Unidades de Saúde

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inductive learning aims at finding general rules that hold true in a database. Targeted learning seeks rules for the predictions of the value of a variable based on the values of others, as in the case of linear or non-parametric regression analysis. Non-targeted learning finds regularities without a specific prediction goal. We model the product of non-targeted learning as rules that state that a certain phenomenon never happens, or that certain conditions necessitate another. For all types of rules, there is a trade-off between the rule's accuracy and its simplicity. Thus rule selection can be viewed as a choice problem, among pairs of degree of accuracy and degree of complexity. However, one cannot in general tell what is the feasible set in the accuracy-complexity space. Formally, we show that finding out whether a point belongs to this set is computationally hard. In particular, in the context of linear regression, finding a small set of variables that obtain a certain value of R2 is computationally hard. Computational complexity may explain why a person is not always aware of rules that, if asked, she would find valid. This, in turn, may explain why one can change other people's minds (opinions, beliefs) without providing new information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Lipid-lowering therapy is costly but effective at reducing coronary heart disease (CHD) risk. OBJECTIVE: To assess the cost-effectiveness and public health impact of Adult Treatment Panel III (ATP III) guidelines and compare with a range of risk- and age-based alternative strategies. DESIGN: The CHD Policy Model, a Markov-type cost-effectiveness model. DATA SOURCES: National surveys (1999 to 2004), vital statistics (2000), the Framingham Heart Study (1948 to 2000), other published data, and a direct survey of statin costs (2008). TARGET POPULATION: U.S. population age 35 to 85 years. Time Horizon: 2010 to 2040. PERSPECTIVE: Health care system. INTERVENTION: Lowering of low-density lipoprotein cholesterol with HMG-CoA reductase inhibitors (statins). OUTCOME MEASURE: Incremental cost-effectiveness. RESULTS OF BASE-CASE ANALYSIS: Full adherence to ATP III primary prevention guidelines would require starting (9.7 million) or intensifying (1.4 million) statin therapy for 11.1 million adults and would prevent 20,000 myocardial infarctions and 10,000 CHD deaths per year at an annual net cost of $3.6 billion ($42,000/QALY) if low-intensity statins cost $2.11 per pill. The ATP III guidelines would be preferred over alternative strategies if society is willing to pay $50,000/QALY and statins cost $1.54 to $2.21 per pill. At higher statin costs, ATP III is not cost-effective; at lower costs, more liberal statin-prescribing strategies would be preferred; and at costs less than $0.10 per pill, treating all persons with low-density lipoprotein cholesterol levels greater than 3.4 mmol/L (>130 mg/dL) would yield net cost savings. RESULTS OF SENSITIVITY ANALYSIS: Results are sensitive to the assumptions that LDL cholesterol becomes less important as a risk factor with increasing age and that little disutility results from taking a pill every day. LIMITATION: Randomized trial evidence for statin effectiveness is not available for all subgroups. CONCLUSION: The ATP III guidelines are relatively cost-effective and would have a large public health impact if implemented fully in the United States. Alternate strategies may be preferred, however, depending on the cost of statins and how much society is willing to pay for better health outcomes. FUNDING: Flight Attendants' Medical Research Institute and the Swanson Family Fund. The Framingham Heart Study and Framingham Offspring Study are conducted and supported by the National Heart, Lung, and Blood Institute.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As demand for electricity from renewable energy sources grows, there is increasing interest, and public and financial support, for local communities to become involved in the development of renewable energy projects. In the UK, “Community Benefit” payments are the most common financial link between renewable energy projects and local communities. These are “goodwill” payments from the project developer for the community to spend as it wishes. However, if an ownership stake in the renewable energy project were possible, receipts to the local community would potentially be considerably higher. The local economic impacts of these receipts are difficult to quantify using traditional Input-Output techniques, but can be more appropriately handled within a Social Accounting Matrix (SAM) framework where income flows between agents can be traced in detail. We use a SAM for the Shetland Islands to evaluate the potential local economic and employment impact of a large onshore wind energy project proposed for the Islands. Sensitivity analysis is used to show how the local impact varies with: the level of Community Benefit payments; the portion of intermediate inputs being sourced from within the local economy; and the level of any local community ownership of the project. By a substantial margin, local ownership confers the greatest economic impacts for the local community.