898 resultados para Oxidative stress in epilepsy
Resumo:
Pregnancy is a dynamic state and the placenta is a temporary organ that, among other important functions, plays a crucial role in the transport of nutrients and metabolites between the mother and the fetus, which is essential for a successful pregnancy. Among these nutrients, glucose is considered a primary source of energy and, therefore, fundamental to insure proper fetus development. Several studies have shown that glucose uptake is dependent on several morphological and biochemical placental conditions. Oxidative stress results from the unbalance between reactive oxygen species (ROS) and antioxidants, in favor of the first. During pregnancy, ROS, and therefore oxidative stress, increase, due to increased tissue oxygenation. Moreover, the relation between ROS and some pathological conditions during pregnancy has been well established. For these reasons, it becomes essential to understand if oxidative stress can compromise the uptake of glucose by the placenta. To make this study possible, a trophoblastic cell line, the BeWo cell line, was used. Experiments regarding glucose uptake, either under normal or oxidative stress conditions, were conducted using tert-butylhydroperoxide (tBOOH) as an oxidative stress inducer, and 3H-2-deoxy-D-glucose (3H-DG) as a glucose analogue. Afterwards, studies regarding the involvement of glucose facilitative transporters (GLUT) and the phosphatidylinositol 3-kinases (PI3K) and protein kinase C (PKC) pathways were conducted, also under normal and oxidative stress conditions. A few antioxidants, endogenous and from diet, were also tested in order to study their possible reversible effect of the oxidative effect of tBOOH upon apical 3H-DG uptake. Finally, transepithelial studies gave interesting insights regarding the apical-to-basolateral transport of 3H-DG. Results showed that 3H-DG uptake, in BeWo cells, is roughly 50% GLUT-mediated and that tBOOH (100 μM; 24h) decreases apical 3H-DG uptake in BeWo cells by about 33%, by reducing both GLUT- (by 28%) and non-GLUT-mediated (by 40%) 3H-DG uptake. Uptake of 3H-DG and the effect of tBOOH upon 3H-DG uptake are not dependent on PKC and PI3K. Moreover, the effect of tBOOH is not associated with a reduction in GLUT1 mRNA levels. Resveratrol, quercetin and epigallocatechin-3-gallate, at 50 μM, reversed, by at least 45%, the effect of tBOOH upon 3H-DG uptake. Transwell studies show that the apical-to-basolateral transepithelial transport of 3H-DG is increased by tBOOH.In conclusion, our results show that tBOOH caused a marked decrease in both GLUT and non-GLUT-mediated apical uptake of 3H-DG by BeWo cells. Given the association of increased oxidative stress levels with several important pregnancy pathologies, and the important role of glucose for fetal development, the results of this study appear very interesting.
Resumo:
Metals are ubiquitous in the environment and accumulate in aquatic organisms and are known for their ability to enhance the production of reactive oxygen species (ROS). In aquatic species, oxidative stress mechanisms have been studied by measuring antioxidant enzyme activities and oxidative damages in tissues. The aim of this study was to apply and validate a set of oxidative stress biomarkers and correlate responses with metal contents in tissues of common octopus (Octopus vulgaris). Antioxidant enzyme activity (catalase — CAT, superoxide dismutase — SOD and glutathione S-transferases — GST), oxidative damages (lipid peroxidation — LPO and protein carbonyl content — PCO) andmetal content (Cu, Zn, Pb, Cd and As) in the digestive gland and armof octopus, collected in the NWPortuguese coast in different periods, were assessed after capture and after 14 days in captivity. CAT and SOD activitieswere highly responsive to fluctuations inmetal concentrations and able to reduce oxidative damage, LPO and PCO in the digestive gland. CAT activity was also positively correlated with SOD and GST activities, which emphasizes that the three enzymes respond in a coordinated way to metal induced oxidative stress. Our results validate the use of oxidative stress biomarkers to assess metal pollution effects in this ecological and commercial relevant species.Moreover, octopus seems to have the ability to control oxidative damage by triggering an antioxidant enzyme coordinated response in the digestive gland.
Resumo:
The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.
Resumo:
This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.
Resumo:
1st ASPIC International Congress
Resumo:
INTRODUCTION: The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. METHODS: To better characterize the oxidative stress response (OSR) of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB)-glutathione disulfide (GSSG) reductase reconversion method; the total antioxidant capacity (TAC) was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic) acid radical cation (ABTS*+). Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM). RESULTS: Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. CONCLUSIONS: Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.
Resumo:
El láser de baja y media energía y la magnetoterapia son utilizados en desórdenes osteomioarticulares por sus efectos analgésico, antiinflamatorio y trófico, entre los más destacados. Sin embargo, son insuficientes las investigaciones sobre su mecanismo de acción y antecedentes científicos que avalen sus efectos. Es por ello, que la determinación de acontecimientos celulares y moleculares que ocurren durante la interacción de estos tipos de energía con el sistema muscular, sería relevante para el conocimiento y optimización de tales terapias en las ciencias biomédicas. En las miopatías inflamatorias idiopáticas, se encuentra afectada la estructura, morfología y bioquímica del tejido muscular. La energía que éste requiere para el normal funcionamiento es generada en la mitocondria. Esta organela también es la responsable de la generación de especies oxidantes provocando estrés oxidativo y el inicio de los procesos de apoptosis. Por lo antes dicho, consideramos que la determinación de los biomarcadores inflamatorios asociados a estrés oxidativo, realizando el análisis histomorfométrico ultraestructural y valorando la actividad de los complejos enzimáticos mitocondriales, permitiría una evaluación de la acción terapéutica del láser y la magnetoterapia en un modelo experimental de miopatía. Para ello se propone evaluar el efecto de la magnetoterapia y del láser de baja energía (He-Ne y As.Ga) en miopatía experimental determinando indicadores inflamatorios asociados a estrés oxidativo, análisis histomorfométrico y valoración de la actividad enzimática mitocondrial. Específicamente: -Determinar indicadores inflamatorios y de estrés oxidativo: Oxido Nítrico, Grupos carbonilos, L-citrulina, Fibrinógeno, Superóxido dismutasa, Glutation peroxidasa y Catalasa por espectrofotometría. -Identificar los cambios anatomopatológicos del músculo esquelético por microscopía óptica (MO): cuantificación del infiltrado inflamatorio; MO de alta resolución (MOAR) y por microscopía electrónica: histomorfometría de la ultraestructura miofibrilar y mitocondrial. -Valorar las actividades enzimáticas de la citrato sintasa y de los complejos: I (NADH-ubiquinona reductasa), II (succinato-ubiquinona-reductasa) III (ubiquinona-citocromo c-reductasa) y IV (citocromo c-oxidasa); en mitocondrias de tejido muscular por espectrofotometría. -Evaluar la actividad apoptótica en las fibras musculares de los diferentes grupos por ténica de T.U.N.E.L. Las mediciones mitocondriales (por ME) y de infiltrado inflamatorio (por MO) se realizarán en un total de 5 fotos de aumentos similares en forma aleatoria por grupo estudiado (n=10). Los cambios estructurales observados se analizarán en el programa Axiovision 4.8, para cuantificar el área total ocupada, número total y grado de alteración de las mitocondrias y el porcentaje de infiltrado inflamatorio determinando el grado de inflamación. Los resultados de los datos cuantitativos se analizarán aplicando ANAVA (test de Fisher para comparaciones múltiples); y para los datos categóricos se utilizará Chi cuadrado (test de Pearson), estableciéndose un nivel de significación de p < 0.05 para todos los casos. Importancia del Proyecto: La salud y el bienestar del hombre son los logros perseguidos por las ciencias de la salud. La obtención de terapias curativas o paliativas con un mínimo de efectos colaterales para el enfermo se incluye en estos logros. Por esto y todo lo anteriormente expuesto es que consideramos de gran importancia poder esclarecer desde las ciencias básicas los efectos celulares y moleculares en modelos experimentales la acción de la terapia con láser y magnetoterapia para una aplicación clínica con base científica en todas las áreas de las Ciencias Médicas. In the idiopathic inflammatory myopathies, is affected the structure, morphology and biochemistry of muscle tissue. The mitochondria is responsible for the generation of oxidizing species leading to oxidative stress and the beginning of the process of apoptosis. As said before, we consider the determination of inflammatory biomarkers related to oxidative stress, by ultrastructural morphometric analysis and assessing the activity of mitochondrial enzyme complexes, permit an evaluation of the therapeutic action of laser and magnetic therapy in an experimental model myopathy. We propose to evaluate the effect of the treatment identifying indicators in experimental inflammatory myopathy associated with oxidative stress, histomorphometric analysis and assessment of mitochondrial enzyme activity. Specifically -determining: Nitric oxide, carbonyl groups, L-citrulline, fibrinogen, superoxide dismutase, glutathione peroxidase and catalase by spectrophotometry. -Identify the pathological changes in skeletal muscle by optical microscopy (OM): quantification of the inflammatory infiltrate, OM high resolution (MOAR) and electron microscopy, histomorphometry of myofibrillar and mitochondrial ultrastructure. -Evaluate the enzymatic activity of citrate synthase and complexes: I, II, III and IV in mitochondria muscle tissue by spectrophotometry. -Evaluate apoptotic activity in muscle fibers by TUNEL technique of Mitochondrial measurements and inflammatory infiltration (by OM) was performed in a total of 5 photos of similar increases in random by the study group (n = 10). The structural changes observed are discussed in the program Axiovision 4.8, to quantify number, degree of alteration of mitochondria and the percentage of inflammatory infiltrate determining the degree of inflammation. The results of the quantitative data were analyzed using ANOVA (Fisher test), and categorical data with Chi-square (Pearson test), establishing a significance level of p <0.05.
Resumo:
Mucocutaneous leishmaniasis (MCL) in South and Central America is characterized by the dissemination (metastasis) of Leishmania Viannia subgenus parasites from a cutaneous lesion to nasopharyngeal tissues. Little is known about the pathogenesis of MCL, especially with regard to the virulence of the parasites and the process of metastatic dissemination. We previously examined the functional relationship between cytoplasmic peroxiredoxin and metastatic phenotype using highly, infrequently, and nonmetastatic clones isolated from an L. (V.) guyanensis strain previously shown to be highly metastatic in golden hamsters. Distinct forms of cytoplasmic peroxiredoxin were identified and found to be associated with the metastatic phenotype. We report here that peroxidase activity in the presence of hydrogen peroxide and infectivity differs between metastatic and nonmetastatic L. (V.) guyanensis clones. After hydrogen peroxide treatment or heat shock, peroxiredoxin was detected preferentially as dimers in metastatic L. (V.) guyanensis clones and in L. (V.) panamensis strains from patients with MCL, compared with nonmetastatic parasites. These data provide evidence that resistance to the first microbicidal response of the host cell by Leishmania promastigotes is linked to peroxiredoxin conformation and may be relevant to intracellular survival and persistence, which are prerequisites for the development of metastatic disease.
Resumo:
Candida glabrata is an opportunistic fungal pathogen that can cause severe invasive infections and can evade phagocytic cell clearance. We are interested in understanding the virulence of this fungal pathogen, in particular its oxidative stress response. Here we investigated C. glabrata, Saccharomyces cerevisiae and Candida albicans responses to two different oxidants: menadione and cumene hydroperoxide (CHP). In log-phase, in the presence of menadione, C. glabrata requires Cta1p (catalase), while in a stationary phase (SP), Cta1p is dispensable. In addition, C. glabrata is less resistant to menadione than C. albicans in SP. The S. cerevisiae laboratory reference strain is less resistant to menadione than C. glabrata and C. albicans; however S. cerevisiaeclinical isolates (CIs) are more resistant than the lab reference strain. Furthermore, S. cerevisiae CIs showed an increased catalase activity. Interestingly, in SP C. glabrata and S. cerevisiae are more resistant to CHP than C. albicans and Cta1p plays no apparent role in detoxifying this oxidant.
Resumo:
Amantadine is an antiviral and antiparkinsonian drug that has been evaluated in combination therapies against hepatitis C virus (HCV) infection. Controversial results have been reported concerning its efficacy, and its mechanism of action remains unclear. Data obtained in vitro suggested a role of amantadine in inhibiting HCV p7-mediated cation conductance. In keeping with the fact that mitochondria are responsible to ionic fluxes and that HCV infection impairs mitochondrial function, we investigated a potential role of amantadine in modulating mitochondrial function. Using a well-characterized inducible cell line expressing the full-length HCV polyprotein, we found that amantadine not only prevented but also rescued HCV protein-mediated mitochondrial dysfunction. Specifically, amantadine corrected (i) overload of mitochondrial Ca(2+); (ii) inhibition of respiratory chain activity and oxidative phosphorylation; (iii) reduction of membrane potential; and (iv) overproduction of reactive oxygen species. The effects of amantadine were observed within 15 min following drug administration and confirmed in Huh-7.5 cells transfected with an infectious HCV genome. These effects were also observed in cells expressing subgenomic HCV constructs, indicating that they are not mediated or only in part mediated by p7. Single organelle analyzes carried out on isolated mouse liver mitochondria demonstrated that amantadine induces hyperpolarization of the membrane potential. Moreover, amantadine treatment increased the calcium threshold required to trigger mitochondrial permeability transition opening. In conclusion, these results support a role of amantadine in preserving cellular bioenergetics and redox homeostasis in HCV-infected cells and unveil an effect of the drug which might be exploited for a broader therapeutic utilization.
Resumo:
To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods) and glutaredoxins (Grxs). The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.