903 resultados para Oil and fat industry
Resumo:
The chemical and physical properties of a Brazilian heavy oil submitted to plasma treatment were investigated by H-1 low-and high-field nuclear magnetic resonance (NMR) combined to the characterization of rheological properties, thermogravimetry and measurement of basic sediments and water (BSW) content. The crude oil was treated in a dielectric barrier discharge plasma reactor, using natural gas, CO2 or H-2 as working gas. The results indicated a large drop in the water content of the plasma-treated samples as compared to the crude oil, giving rise to a reduction in the viscosity. No significant chemical change was produced in the oil portion itself, as observed by H-1 NMR. The water contents determined by H-1 low-field NMR analyses agreed well with those obtained by BSW, indicating the low-field NMR methods as a useful tool for following the effects of plasma treatments on heavy oils, allowing the separation of the effects caused on the water and oil fractions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Evidence points to a role of the mammalian target of rapamycin (mTOR) signaling pathway as a regulator of adiposity, yet its involvement as a mediator of the positive actions of peroxisome proliferator-activated receptor (PPAR)gamma agonism on lipemia, fat accretion, lipid uptake, and its major determinant lipoprotein lipase (LPL) remains to be elucidated. Herein we evaluated the plasma lipid profile, triacylglycerol (TAG) secretion rates, and adipose tissue LPL-dependent lipid uptake, LPL expression/activity, and expression profile of other lipid metabolism genes in rats treated with the PPAR gamma agonist rosiglitazone (15 mg/kg/day) in combination or not with the mTOR inhibitor rapamycin (2 mg/kg/day) for 15 days. Rosiglitazone stimulated adipose tissue mTOR complex 1 and AMPK and induced TAG-derived lipid uptake (136%), LPL mRNA/activity (2- to 6-fold), and fat accretion in subcutaneous (but not visceral) white adipose tissue (WAT; 50%) and in brown adipose tissue (BAT; 266%). Chronic mTOR inhibition attenuated the upregulation of lipid uptake, LPL expression/activity, and fat accretion induced by PPAR gamma activation in both subcutaneous WAT and BAT, which resulted in hyperlipidemia. In contrast, rapamycin did not affect most of the other WAT lipogenic genes upregulated by rosiglitazone. Together these findings demonstrate that mTOR is a major regulator of adipose tissue LPL-mediated lipid uptake and a critical mediator of the hypolipidemic and lipogenic actions of PPAR gamma activation.-Blanchard, P-G., W. T. Festuccia, V. P. Houde, P. St-Pierre, S. Brule, V. Turcotte, M. Cote, K. Bellmann, A. Marette, and Y. Deshaies. Major involvement of mTOR in the PPAR gamma-induced stimulation of adipose tissue lipid uptake and fat accretion. J. Lipid Res. 2012. 53: 1117-1125.
Resumo:
Different components of the mixed function oxidase (MFO) system and the levels of fluorescent aromatic compounds in bile (FACs) were measured in Cathorops spixii in order to assess the impact of polycyclic aromatic hydrocarbons (PAHs). Fish were sampled in an estuary (Santos/Sao Vicente) with a history of contamination by PAHs, mainly due to the presence of the industrial complex of Cubatao city and of another of low anthropogenic influence (Cananeia) on the Brazilian coast. FACs were higher in fish from the polluted site, and the PAH 5 and 6-ring metabolites were the most frequent - with 14% and 15%, respectively. Levels of the different components of the MFO system showed the same variation profile as the FACs for both estuaries. Therefore, the values found for somatic indexes and biomarkers with data of bile PAH metabolites indicate the presence of organic contaminants, especially in the area subject to the influence of the industrial complex on the Santos/Sao Vicente estuary.
Resumo:
The volatile and non-volatile constituents of the unripe fruits of Magnolia ovata (A. St.-Hil.) Spreng. (Magnoliaceae) were studied. The essential oils were obtained by hydrodistillation of the fruit of two plant populations (A and B) and analyzed by GC/FID and GC/MS. The oil of sample A was rich in sesquiterpenes, mainly spathulenol (19.3%), while the oil of sample B showed a predominance of aliphatic compounds, mainly hexadecanoic acid (52.0%). Extracts of the dried fruit contained fourteen known compounds including nine lignoids (magnovatin A, magnovatin B, acuminatin, licarin A, oleiferin A, oleiferin C, kadsurenin M, 4-O-demethylkadsurenim M and 7-epi-virolin), two sesquiterpene lactones (parthenolide and michelenolide) and three alkaloids (lysicamine, lanuginosine and O-methylmoschatoline). Michelenolide, 7-epi-virolin and lisycamine are reported for the first time in the species, while the remaining compounds have already been reported in the leaves and/or trunk bark of Magnolia ovata. Acetylation of oleiferin A yielded a new compound, acetyl oleiferin A, whose NMR data and that of michelenolide are furnished.
Resumo:
An environmental impact study was conducted to determine the Piracicamirim's creek water quality in order to assess the influence of effluents from a sugar industry in this water body. For this, toxicity tests were performed with a water sample upstream and downstream the industry using the microcrustaceans Daphnia magna, Ceriodaphnia dubia and Ceriodaphnia silvestrii as test organisms, as well as physical and chemical analysis of water. Results showed that physical and chemical parameters did not change during the sampling period, except for the dissolved oxygen. No toxicity was observed for D. magna and reproduction of C. dubia and C. silvestrii in both sampling points. Thus, the industry was not negatively impacting the quality of this water body.
Resumo:
This study aims to evaluate the thickness of the femoral quadriceps and biceps brachii and brachialis muscles bilaterally and the adjacent subcutaneous fat in patients undergoing gastric bypass Roux-en-Y before and after surgery, using ultrasound as the diagnostic method of choice. We studied 12 patients undergoing this surgical method preoperatively and during the first, third, and sixth postoperative months. During these periods, patients were evaluated by ultrasound to determine the thickness of subcutaneous adipose tissue and muscle of the upper and lower limbs. Postoperatively, these patients showed a reduction in the thickness of the upper and lower extremities muscle and adipose tissue as compared to their preoperative values. There was a significant difference in the loss of muscle thickness in all postoperative months and in the thickness of fatty tissue in the sixth month after surgery, compared to the preoperative muscle and fatty tissue thickness. Ultrasound can be considered as the diagnostic method of choice when assessment of the fat and lean body mass is required in morbidly obese patients before and after bariatric surgery.
Resumo:
The liquid-liquid equilibria of systems composed of rice bran oil, free fatty acids, ethanol and water were investigated at temperatures ranging from 10 to 60 degrees C. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. The experimental data set was correlated by applying the UNIQUAC model. The average variance between the experimental and calculated compositions was 0.35%, indicating that the model can accurately predict behavior of the compounds at different temperatures and degrees of hydration. The adjustment of interaction parameters enables both the simulation of liquid-liquid extractors for deacidification of vegetable oil and the prediction of phase compositions for the oil and alcohol-rich phases that are generated during cooling of the stream exiting the extractor (when using ethanol as the solvent). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Corymbia citriodora is one of the most important forest species in Brazil and the reason is the diversity of its use, because it produces good quality wood and the leaves may be used for essential oil production. Although, there are not many studies about species and the handling effect in the nutritional balance. This study aimed to evaluate the biomass production and nutrient balance in the conventional production of essential oil and wood of Corymbia citriodora with sewage sludge application. The experiment design established was the randomized blocks, with four replicates and two treatments: 1 - fertilization with 10 tons ha(-1) (dry mass) of sewage sludge, supplemented with K and B, and 2 - mineral fertilization. It was evaluated the aerial biomass production, the nutrient export of the leaves, the essential oil and wood production at four years old. The trees that received application of sewage sludge produced 20 % more leaves biomass than the trees with mineral fertilization, resulting in larger oil production. Besides, the trees with sewage sludge application produced 14.2 tons ha(-1) yr(-1) of woody biomass that was 27 % higher than the treatment with mineral fertilization. For both treatments the N balance was negative, but treatment with sewage sludge application (-45 kg ha(-1)) was four times lower than the observed on mineral fertilization treatment (-185 kg ha(-1)). It may be concluded in this paper that the application of sewage sludge benefits the production of leaves biomass, essential oil and wood, besides result better nutritional balance of the Corymbia citriodora production system.
Resumo:
An environmental impact study was conducted to determine the Piracicamirim's creek water quality in order to assess the influence of effluents from a sugar industry in this water body. For this, toxicity tests were performed with a water sample upstream and downstream the industry using the microcrustaceans Daphnia magna, Ceriodaphnia dubia and Ceriodaphnia silvestrii as test organisms, as well as physical and chemical analysis of water. Results showed that physical and chemical parameters did not change during the sampling period, except for the dissolved oxygen. No toxicity was observed for D. magna and reproduction of C. dubia and C. silvestrii in both sampling points. Thus, the industry was not negatively impacting the quality of this water body.
Resumo:
This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.
Resumo:
Granular matter, also known as bulk solids, consists of discrete particles with sizes between micrometers and meters. They are present in many industrial applications as well as daily life, like in food processing, pharmaceutics or in the oil and mining industry. When handling granular matter the bulk solids are stored, mixed, conveyed or filtered. These techniques are based on observations in macroscopic experiments, i.e. rheological examinations of the bulk properties. Despite the amply investigations of bulk mechanics, the relation between single particle motion and macroscopic behavior is still not well understood. For exploring the microscopic properties on a single particle level, 3D imaging techniques are required.rnThe objective of this work was the investigation of single particle motions in a bulk system in 3D under an external mechanical load, i.e. compression and shear. During the mechanical load the structural and dynamical properties of these systems were examined with confocal microscopy. Therefor new granular model systems in the wet and dry state were designed and prepared. As the particles are solid bodies, their motion is described by six degrees of freedom. To explore their entire motion with all degrees of freedom, a technique to visualize the rotation of spherical micrometer sized particles in 3D was developed. rnOne of the foci during this dissertation was a model system for dry cohesive granular matter. In such systems the particle motion during a compression of the granular matter was investigated. In general the rotation of single particles was the more sensitive parameter compared to the translation. In regions with large structural changes the rotation had an earlier onset than the translation. In granular systems under shear, shear dilatation and shear zone formation were observed. Globally the granular sediments showed a shear behavior, which was known already from classical shear experiments, for example with Jenike cells. Locally the shear zone formation was enhanced, when near the applied load a pre-diluted region existed. In regions with constant volume fraction a mixing between the different particle layers occurred. In particular an exchange of particles between the current flowing region and the non-flowing region was observed. rnThe second focus was on model systems for wet granular matter, where an additional binding liquid is added to the particle suspension. To examine the 3D structure of the binding liquid on the micrometer scale independently from the particles, a second illumination and detection beam path was implemented. In shear and compression experiments of wet clusters and bulk systems completely different dynamics compared to dry cohesive models systems occured. In a Pickering emulsion-like system large structural changes predominantly occurred in the local environment of binding liquid droplets. These large local structural changes were due to an energy interplay between the energy stored in the binding droplet during its deformation and the binding energy of particles at the droplet interface. rnConfocal microscopy in combination with nanoindentation gave new insights into the single particle motions and dynamics of granular systems under a mechanical load. These novel experimental results can help to improve the understanding of the relationship between bulk properties of granular matter, such as volume fraction or yield stress and the dynamics on a single particle level.rnrn
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
To prospectively evaluate a 3-dimensional spoiled gradient-dual-echo (3D SPGR-DE) magnetic resonance imaging (MRI) sequence for the qualitative and quantitative analysis of liver fat content (LFC) in patients with the suspicion of fatty liver disease using histopathology as the standard of reference.
Resumo:
OBJECTIVE: The objective of our study was to establish optimal perfusion conditions for high-resolution postmortem angiography that would permit dynamic visualization of the arterial and venous systems. MATERIALS AND METHODS: Cadavers of two dogs and one cat were perfused with diesel oil through a peristaltic pump. The lipophilic contrast agent Lipiodol Ultra Fluide was then injected, and angiography was performed. The efficiency of perfusion was evaluated in the chick chorioallantoic membrane. RESULTS: Vessels could be seen up to the level of the smaller supplying and draining vessels. Hence, both the arterial and the venous sides of the vascular system could be distinguished. The chorioallantoic membrane assay revealed that diesel oil enters microvessels up to 50 microm in diameter and that it does not penetrate the capillary network. CONCLUSION: After establishing a postmortem circulation by diesel oil perfusion, angiography can be performed by injection of Lipiodol Ultra Fluide. The resolution of the images obtained up to 3 days after death is comparable to that achieved in clinical angiography.