913 resultados para Object naming
Resumo:
We present a unifying framework in which "object-independent" modes of variation are learned from continuous-time data such as video sequences. These modes of variation can be used as "generators" to produce a manifold of images of a new object from a single example of that object. We develop the framework in the context of a well-known example: analyzing the modes of spatial deformations of a scene under camera movement. Our method learns a close approximation to the standard affine deformations that are expected from the geometry of the situation, and does so in a completely unsupervised (i.e. ignorant of the geometry of the situation) fashion. We stress that it is learning a "parameterization", not just the parameter values, of the data. We then demonstrate how we have used the same framework to derive a novel data-driven model of joint color change in images due to common lighting variations. The model is superior to previous models of color change in describing non-linear color changes due to lighting.
Resumo:
While navigating in an environment, a vision system has to be able to recognize where it is and what the main objects in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is to identify familiar locations (e.g., office 610, conference room 941, Main Street), to categorize new environments (office, corridor, street) and to use that information to provide contextual priors for object recognition (e.g., table, chair, car, computer). We present a low-dimensional global image representation that provides relevant information for place recognition and categorization, and how such contextual information introduces strong priors that simplify object recognition. We have trained the system to recognize over 60 locations (indoors and outdoors) and to suggest the presence and locations of more than 20 different object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user.
Resumo:
This memo describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plausible supervision signal for learning the static boundary detection task and for evaluating performance on a test set. A video camera and previously developed background subtraction algorithms can automatically produce a large database of motion-segmented images for minimal cost. The purpose of this work is to use the information in such a database to learn how to detect the object boundaries in novel images using static information, such as color, texture, and shape. This work was funded in part by the Office of Naval Research contract #N00014-00-1-0298, in part by the Singapore-MIT Alliance agreement of 11/6/98, and in part by a National Science Foundation Graduate Student Fellowship.
Resumo:
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects. We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required, and therefore the computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts. Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class object detection.
Resumo:
We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes.
Resumo:
This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems.
Resumo:
This research project is a study of the role of fixation and visual attention in object recognition. In this project, we build an active vision system which can recognize a target object in a cluttered scene efficiently and reliably. Our system integrates visual cues like color and stereo to perform figure/ground separation, yielding candidate regions on which to focus attention. Within each image region, we use stereo to extract features that lie within a narrow disparity range about the fixation position. These selected features are then used as input to an alignment-style recognition system. We show that visual attention and fixation significantly reduce the complexity and the false identifications in model-based recognition using Alignment methods. We also demonstrate that stereo can be used effectively as a figure/ground separator without the need for accurate camera calibration.
Resumo:
Techniques, suitable for parallel implementation, for robust 2D model-based object recognition in the presence of sensor error are studied. Models and scene data are represented as local geometric features and robust hypothesis of feature matchings and transformations is considered. Bounds on the error in the image feature geometry are assumed constraining possible matchings and transformations. Transformation sampling is introduced as a simple, robust, polynomial-time, and highly parallel method of searching the space of transformations to hypothesize feature matchings. Key to the approach is that error in image feature measurement is explicitly accounted for. A Connection Machine implementation and experiments on real images are presented.
Resumo:
A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.
Resumo:
Thomasson, B. Ratcliffe, M. Thomas, L. Identifying Novice Difficulties in Object Orientated Design. ACM SIGCSE Bulletin Volume 38 , Issue 3 (September 2006)
Resumo:
Thomas, L.A., Ratcliffe, M.B. and Thomasson, B. J., Can Object (Instance) Diagrams Help First Year Students Understand Program Behaviour? in Diagrammatic Representation and Inference, Diagrams 2004, editors A. Blackwell, K. Marriot and Atushi Shimojima, Springer Lecture Notes on Artificial Intelligence, 2980.
Resumo:
Sanders, K. and Thomas, L. 2007. Checklists for grading object-oriented CS1 programs: concepts and misconceptions. In Proceedings of the 12th Annual SIGCSE Conference on innovation and Technology in Computer Science Education (Dundee, Scotland, June 25 - 27, 2007). ITiCSE '07. ACM, New York, NY, 166-170
Resumo:
This report describes our attempt to add animation as another data type to be used on the World Wide Web. Our current network infrastructure, the Internet, is incapable of carrying video and audio streams for them to be used on the web for presentation purposes. In contrast, object-oriented animation proves to be efficient in terms of network resource requirements. We defined an animation model to support drawing-based and frame-based animation. We also extended the HyperText Markup Language in order to include this animation mode. BU-NCSA Mosanim, a modified version of the NCSA Mosaic for X(v2.5), is available to demonstrate the concept and potentials of animation in presentations an interactive game playing over the web.
Resumo:
Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly learned in a multiplicative form of two kernel functions. One kernel measures similarity for foreground-background classification. The other kernel accounts for latent factors that control within-class variation and implicitly enables feature sharing among foreground training samples. Detector training can be accomplished via standard SVM learning. The resulting detectors are tuned to specific variations in the foreground class. They also serve to evaluate hypotheses of the foreground state. When the foreground parameters are provided in training, the detectors can also produce parameter estimate. When the foreground object masks are provided in training, the detectors can also produce object segmentation. The advantages of our method over past methods are demonstrated on data sets of human hands and vehicles.
Resumo:
Establishing correspondences among object instances is still challenging in multi-camera surveillance systems, especially when the cameras’ fields of view are non-overlapping. Spatiotemporal constraints can help in solving the correspondence problem but still leave a wide margin of uncertainty. One way to reduce this uncertainty is to use appearance information about the moving objects in the site. In this paper we present the preliminary results of a new method that can capture salient appearance characteristics at each camera node in the network. A Latent Dirichlet Allocation (LDA) model is created and maintained at each node in the camera network. Each object is encoded in terms of the LDA bag-of-words model for appearance. The encoded appearance is then used to establish probable matching across cameras. Preliminary experiments are conducted on a dataset of 20 individuals and comparison against Madden’s I-MCHR is reported.