891 resultados para NEUROLOGICAL DISEASES
Resumo:
Purpose: The aim of the present study was to develop and test new digital imaging equipment and methods for diagnosis and follow-up of ocular diseases. Methods: The whole material comprised 398 subjects (469 examined eyes), including 241 patients with melanocytic choroidal tumours, 56 patients with melanocytic iris tumours, 42 patients with diabetes, a 52-year old patient with chronic phase of VKH disease, a 30-year old patient with an old blunt eye injury, and 57 normal healthy subjects. Digital 50° (Topcon TRC 50 IA) and 45° (Canon CR6-45NM) fundus cameras, a new handheld digital colour videocamera for eye examinations (MediTell), a new subtraction method using the Topcon Image Net Program (Topcon corporation, Tokyo, Japan), a new method for digital IRT imaging of the iris we developed, and Zeiss photoslitlamp with a digital camera body were used for digital imaging. Results: Digital 50° red-free imaging had a sensitivity of 97.7% and two-field 45° and 50° colour imaging a sensitivity of 88.9-94%. The specificity of the digital 45°-50° imaging modalities was 98.9-100% versus the reference standard and ungradeable images that were 1.2-1.6%. By using the handheld digital colour video camera only, the optic disc and central fundus located inside 20° from the fovea could be recorded with a sensitivity of 6.9% for detection of at least mild NPDR when compared with the reference standard. Comparative use of digital colour, red-free, and red light imaging showed 85.7% sensitivity, 99% specificity, and 98.2 % exact agreement versus the reference standard in differentiation of small choroidal melanoma from pseudomelanoma. The new subtraction method showed growth in four of 94 melanocytic tumours (4.3%) during a mean ±SD follow-up of 23 ± 11 months. The new digital IRT imaging of the iris showed the sphincter muscle and radial contraction folds of Schwalbe in the pupillary zone and radial structural folds of Schwalbe and circular contraction furrows in the ciliary zone of the iris. The 52-year-old patient with a chronic phase of VKH disease showed extensive atrophy and occasional pigment clumps in the iris stroma, detachment of the ciliary body with severe ocular hypotony, and shallow retinal detachment of the posterior pole in both eyes. Infrared transillumination imaging and fluorescein angiographic findings of the iris showed that IR translucence (p=0.53), complete masking of fluorescence (p=0.69), presence of disorganized vessels (p=0.32), and fluorescein leakage (p=1.0) at the site of the lesion did not differentiate an iris nevus from a melanoma. Conclusions: Digital 50° red-free and two-field 50° or 45° colour imaging were suitable for DR screening, whereas the handheld digital video camera did not fulfill the needs of DR screening. Comparative use of digital colour, red-free and red light imaging was a suitable method in the differentiation of small choroidal melanoma from different pseudomelanomas. The subtraction method may reveal early growth of the melanocytic choroidal tumours. Digital IRT imaging may be used to study changes of the stroma and posterior surface of the iris in various diseases of the uvea. It contributed to the revealment of iris atrophy and serous detachment of the ciliary body with ocular hypotony together with the shallow retinal detachment of the posterior pole as new findings of the chronic phase of VKH disease. Infrared translucence and angiographic findings are useful in differential diagnosis of melanocytic iris tumours, but they cannot be used to determine if the lesion is benign or malignant.
Resumo:
Myocardial infarction (MI) and heart failure are major causes of morbidity and mortality worldwide. Treatment of MI involves early restoration of blood flow to limit infarct size and preserve cardiac function. MI leads to left ventricular remodeling, which may eventually progress to heart failure, despite the established pharmacological treatment of the disease. To improve outcome of MI, new strategies for protecting the myocardium against ischemic injury and enhancing the recovery and repair of the infarcted heart are needed. Heme oxygenase-1 (HO-1) is a stress-responsive and cytoprotective enzyme catalyzing the degradation of heme into the biologically active reaction products biliverdin/bilirubin, carbon monoxide (CO) and free iron. HO-1 plays a key role in maintaining cellular homeostasis by its antiapoptotic, anti-inflammatory, antioxidative and proangiogenic properties. The present study aimed, first, at evaluating the role of HO-1 as a cardioprotective and prohealing enzyme in experimental rat models and at investigating the potential mechanisms mediating the beneficial effects of HO-1 in the heart. The second aim was to evaluate the role of HO-1 in 231 critically ill intensive care unit (ICU) patients by investigating the association of HO-1 polymorphisms and HO-1 plasma concentrations with illness severity, organ dysfunction and mortality throughout the study population and in the subgroup of cardiac patients. We observed in an experimental rat MI model, that HO-1 expression was induced in the infarcted rat hearts, especially in the infarct and infarct border areas. In addition, pre-emptive HO-1 induction and CO donor pretreatment promoted recovery and repair of the infarcted hearts by differential mechanisms. CO promoted vasculogenesis and formation of new cardiomyocytes by activating c-kit+ stem/progenitor cells via hypoxia-inducible factor 1 alpha, stromal cell-derived factor 1 alpha (SDF-1a) and vascular endothelial growth factor B, whereas HO-1 promoted angiogenesis possibly via SDF-1a. Furthermore, HO-1 protected the heart in the early phase of infarct healing by increasing survival and proliferation of cardiomyocytes. The antiapoptotic effect of HO-1 persisted in the late phases of infarct healing. HO-1 also modulated the production of extracellular matrix components and reduced perivascular fibrosis. Some of these beneficial effects of HO-1 were mediated by CO, e.g. the antiapoptotic effect. However, CO may also have adverse effects on the heart, since it increased the expression of extracellular matrix components. In isolated perfused rat hearts, HO-1 induction improved the recovery of postischemic cardiac function and abrogated reperfusion-induced ventricular fibrillation, possibly in part via connexin 43. We found that HO-1 plasma levels were increased in all critically ill patients, including cardiac patients, and were associated with the degree of organ dysfunction and disease severity. HO-1 plasma concentrations were also higher in ICU and hospital nonsurvivors than in survivors, and the maximum HO-1 concentration was an independent predictor of hospital mortality. Patients with the HO-1 -413T/GT(L)/+99C haplotype had lower HO-1 plasma concentrations and lower incidence of multiple organ dysfunction. However, HO-1 polymorphisms were not associated with ICU or hospital mortality. The present study shows that HO-1 is induced in response to stress in both experimental animal models and severely ill patients. HO-1 played an important role in the recovery and repair of infarcted rat hearts. HO-1 induction and CO donor pretreatment enhanced cardiac regeneration after MI, and HO-1 may protect against pathological left ventricular remodeling. Furthermore, HO-1 induction potentially may protect against I/R injury and cardiac dysfunction in isolated rat hearts. In critically ill ICU patients, HO-1 plasma levels correlate with the degree of organ dysfunction, disease severity, and mortality, suggesting that HO-1 may be useful as a marker of disease severity and in the assessment of outcome of critically ill patients.
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
Complications of atherosclerosis such as myocardial infarction and stroke are the primary cause of death in Western societies. The development of atherosclerotic lesions is a complex process, including endothelial cell dysfunction, inflammation, extracellular matrix alteration and vascular smooth muscle cell (VSMC) proliferation and migration. Various cell cycle regulatory proteins control VSMC proliferation. Protein kinases called cyclin dependent kinases (CDKs) play a major role in regulation of cell cycle progression. At specific phases of the cell cycle, CDKs pair with cyclins to become catalytically active and phosphorylate numerous substrates contributing to cell cycle progression. CDKs are also regulated by cyclin dependent kinase inhibitors, activating and inhibitory phosphorylation, proteolysis and transcription factors. This tight regulation of cell cycle is essential; thus its deregulation is connected to the development of cancer and other proliferative disorders such as atherosclerosis and restenosis as well as neurodegenerative diseases. Proteins of the cell cycle provide potential and attractive targets for drug development. Consequently, various low molecular weight CDK inhibitors have been identified and are in clinical development. Tylophorine is a phenanthroindolizidine alkaloid, which has been shown to inhibit the growth of several human cancer cell lines. It was used in Ayurvedic medicine to treat inflammatory disorders. The aim of this study was to investigate the effect of tylophorine on human umbilical vein smooth muscle cell (HUVSMC) proliferation, cell cycle progression and the expression of various cell cycle regulatory proteins in order to confirm the findings made with tylophorine in rat cells. We used several methods to determine our hypothesis, including cell proliferation assay, western blot and flow cytometric cell cycle distribution analysis. We demonstrated by cell proliferation assay that tylophorine inhibits HUVSMC proliferation dose-dependently with an IC50 value of 164 nM ± 50. Western blot analysis was used to determine the effect of tylophorine on expression of cell cycle regulatory proteins. Tylophorine downregulates cyclin D1 and p21 expression levels. The results of tylophorine’s effect on phosphorylation sites of p53 were not consistent. More sensitive methods are required in order to completely determine this effect. We used flow cytometric cell cycle analysis to investigate whether tylophorine interferes with cell cycle progression and arrests cells in a specific cell cycle phase. Tylophorine was shown to induce the accumulation of asynchronized HUVSMCs in S phase. Tylophorine has a significant effect on cell cycle, but its role as cell cycle regulator in treatment of vascular proliferative diseases and cancer requires more experiments in vitro and in vivo.
Resumo:
Although improved outcomes for children on peritoneal dialysis (PD) have been seen in recent years, the youngest patients continue to demonstrate inferior growth, more frequent infections, more neurological sequelae, and higher mortality compared to older children. Also, maintain-ing normal intravascular volume status, especially in anuric patients, has proven difficult. This study was designed to treat and monitor these youngest PD patients, which are relatively many due to the high prevalence of congenital nephrotic syndrome of the Finnish type (CNF, NPHS1) in Finland, with a strict protocol, to evaluate the results and to improve metabolic balance, growth, and development. A retrospective analysis of 23 children under two years of age at onset of PD, treated between 1995 and 2000, was performed to obtain a control population for our prospective PD study. Respectively, 21 patients less than two years of age at the beginning of PD were enrolled in prospective studies between 2001 and 2005. Medication for uremia and nutrition were care-fully adjusted during PD. Laboratory parameters and intravascular volume status were regu-larly analyzed. Growth was analyzed and compared with midparental height. In a prospective neurological study, the risk factors for development and the neurological development was determined. Brain images were surveyed. Hearing was tested. In a retrospective neurological study, the data of six NPHS1 patients with a congruent neurological syndrome was analyzed. All these patients had a serious dyskinetic cerebral palsy-like syndrome with muscular dysto-nia and athetosis (MDA). They also had a hearing defect. Metabolic control was mainly good in both PD patient groups. Hospitalization time shortened clearly. The peritonitis rate diminished. Hypertension was a common problem. Left ventricular hypertrophy decreased during the prospective study period. None of the patients in either PD group had pulmonary edema or dialysis-related seizures. Growth was good and catch-up growth was documented in most patients in both patient groups during PD. Mortality was low (5% in prospective and 9% in retrospective PD patients). In the prospective PD patient group 11 patients (52%) had some risk factor for their neuro-development originating from the predialysis period. The neurological problems, detected be-fore PD, did not worsen during PD and none of the patients developed new neurological com-plications during PD. Brain infarcts were detected in four (19%) and other ischemic lesions in three patients (14%). At the end of this study, 29% of the prospectively followed patients had a major impairment of their neurodevelopment and 43% only minor impairment. In the NPHS1+MDA patients, no clear explanation for the neurological syndrome was found. The brain MRI showed increased signal intensity in the globus pallidus area. Kernic-terus was contemplated to be causative in the hypoproteinemic newborns but it could not be proven. Mortality was as high as 67%. Our results for young PD patients were promising. Metabolic control was acceptable and growth was good. However, the children were significantly smaller when compared to their midparental height. Although many patients were found to have neurological impairment at the end of our follow-up period, PD was a safe treatment whereby the neurodevelopment did not worsen during PD.
Resumo:
Alfavirukset ovat positiivissäkeisiä RNA-viruksia, jotka kuuluvat Togaviridea –heimoon. Alfaviruksia levittävät Aedes –suvun hyttyset ja niitä esiintyy Etelämanteretta lukuunottamatta kaikilla mantereilla. Alfaviruksia on tähän mennessä löydetty 29 lajia ja ne voidaan jakaa uuden ja vanhan maailman viruksiin niiden maantieteellisen esiintyvyyden ja taudinaiheuttamiskyvyn mukaan. Chikunkunyavirus (CHIKV) on yksi vanhan maailman alfaviruksista, jota esiintyy muun muassa Afrikassa ja Aasiassa. Ilmaston lämmettyä se on leviämässä myös eteläiseen Eurooppaan. Ihmisessä se aiheuttaa muun muassa kuumetta, päänsärkyä, ihottumaa ja niveltulehdusta, joka voi kestää useita vuosia ja ne voivat olla hyvinkin kivuliaita. Pienillä lapsilla chikungunya on todettu aiheuttavan myös neurologisia oireita kuten aivotulehdusta. Alfaviruksen genomi koodaa neljää rakenneproteiinia ja neljää replikaatioproteiinia. Replikaatioproteiineista nsP3 sisältää makrodomeeniosan. Makrodomeeniproteiinit ovat eliökunnassa konservoituneita, mutta makrodomeeniproteiinien tarkkaa merkitystä ei vielä tunneta. Makrodomeenien on osoitettu sitovan ADP-riboosia ja sen johdannaisia ja alfaviruksen nsP3-proteiinin on osoitettu olevan tärkeä osa viruksen replikaatiossa. Tutkimuksen tavoitteena oli tutkia makrodomeeniproteiiniin sitoutuvien yhdisteiden käyttöä antiviraalisena yhdisteinä. Tietokonemallinnuksella valittiin antiviraalitutkimuksiin 45 yhdistettä, joiden oletettiin sitoutuvan makrodomeeniproteiiniin. Kilpailevassa sitoutumiskokeessa viisi yhdistettä esti yli 50 % poly-ADP-riboosia (PAR) sitoutumasta MDO1-makrodomeeniproteiiniin, jolla tietokonemallinnus oli tehty. SFV-makrodomeeniproteiinilla tehdyssä kokeessa vain yksi yhdiste esti yli 50 % poly-ADP-riboosin sitoutumisen. SFV-antiviraalikokeessa seitsemällä yhdisteellä inhibitioprosentti oli yli 50 %. Näillä yhdisteillä ei kuitenkaan ollut merkittävää vaikutusta poly-ADP-riboosin sitoutumisen estossa. CHIKV-replikonikokeessa yli 50 % inhibitioprosentti oli viidellä yhdisteellä. Muiden mahdollisia vaikutusmekanismeja tutkittiin selvittämällä estävätkö yhdisteet virusta pääsemästä solun sisään. Tässä kokeessa tutkituista yhdisteistä lähes kaikilla oli vaikutusta viruksen soluun pääsyn estossa. Yleisesti ottaen kyky estää PAR:n sitoutuminen makrodomeeniproteiineihin ja antiviraaliset vaikutukset eivät korreloineet keskenään tutkittavilla yhdisteillä. Vaikka antiviraalista vaikutusta omaavat yhdisteet eivät osoittaneetkaan makrodomeeni-inhibiitiota, työssä löydettiin potentiaalisia antiviraalisia yhdisteitä joiden käyttö viruksen soluun pääsyn estäjinä antaa aihetta jatkotutkimuksille.
Resumo:
Multiple sclerosis (MS) is the most common cause of neurological disability in young adults, affecting more than two million people worldwide. It manifests as a chronic inflammation in the central nervous system (CNS) and causes demyelination and neurodegeneration. Depending on the location of the demyelinated plaques and axonal loss, a variety of symptoms can be observed including deficits in vision, coordination, balance and movement. With a typical age of onset at 20-40 years, the social and economic impacts of MS on lives of the patients and their families are considerable. Unfortunately the current treatments are relatively inefficient and the development of more effective treatments has been impeded by our limited understanding of the causes and pathogenesis of MS. Risk of MS is higher in biological relatives of MS patients than in the general population. Twin and adoption studies have shown that familial clustering of MS is explained by shared genetic factors rather than by shared familial environment. While the involvement of the human leukocyte antigen (HLA) genes was first discovered four decades ago, additional genetic risk factors have only recently been identified through genome-wide association studies (GWAS). Current evidence suggests that MS is a highly polygenic disease with perhaps hundreds of common variants with relatively modest effects contributing to susceptibility. Despite extensive research, the majority of these risk factors still remain to be identified. In this thesis the aim was to identify novel genes and pathways involved in MS. Using genome-wide microarray technology, gene expression levels in peripheral blood mononuclear cells (PBMC) from 12 MS patients and 15 controls were profiled and more than 600 genes with altered expression in MS were identified. Three of five selected findings, DEFA1A3, LILRA4 and TNFRSF25, were successfully replicated in an independent sample. Increased expression of DEFA1A3 in MS is a particularly interesting observation, because its elevated levels have previously been reported also in several other autoimmune diseases. A systematic review of seven microarray studies was then performed leading to identification of 229 genes, in which either decreased or increased expression in MS had been reported in at least two studies. In general there was relatively little overlap across the experiments: 11 of the 229 genes had been reported in three studies and only HSPA1A in four studies. Nevertheless, these 229 genes were associated with several immunological pathways including interleukin pathways related to type 2 and type 17 helper T cells and regulatory T cells. However, whether these pathways are involved in causing MS or related to secondary processes activated after disease onset remains to be investigated. The 229 genes were also compared with loci identified in published MS GWASs. Single nucleotide polymorphisms (SNP) in 17 of the 229 loci had been reported to be associated with MS with P-value less than 0.0001 including variants in CXCR4 and SAPS2, which were the only loci where evidence for correlation between the associated variant and gene expression was found. The CXCR4 variant was further tested for association with MS in a large case-control sample and the previously reported suggestive association was replicated (P-value is 0.0004). Finally, common genetic variants in candidate genes, which had been selected on the basis of showing association with other autoimmune diseases (MYO9B) or showing differential expression in MS in our study (DEFA1A3, LILRA4 and TNFRSF25), were tested for association with MS, but no evidence of association was found. In conclusion, through a systematic review of genome-wide expression studies in MS we have identified several promising candidate genes and pathways for future studies. In addition, we have replicated a previously suggested association of a SNP variant upstream of CXCR4 with MS. Keywords: autoimmune disease, common variant, CXCR4, DEFA1A3, HSPA1A,gene expression, genetic association, GWAS, MS, multiple sclerosis, systematic review
Resumo:
A generic nonlinear mathematical model describing the human immunological dynamics is used to design an effective automatic drug administration scheme. Even though the model describes the effects of various drugs on the dynamic system, this work is confined to the drugs that kill the invading pathogen and heal the affected organ. From a system theoretic point of view, the drug inputs can be interpreted as control inputs, which can be designed based on control theoretic concepts. The controller is designed based on the principle of dynamic inversion and is found to be effective in curing the �nominal model patient� by killing the invading microbes and healing the damaged organ. A major advantage of this technique is that it leads to a closed-form state feedback form of control. It is also proved from a rigorous mathematical analysis that the internal dynamics of the system remains stable when the proposed controller is applied. A robustness study is also carried out for testing the effectiveness of the drug administration scheme for parameter uncertainties. It is observed from simulation studies that the technique has adequate robustness for many �realistic model patients� having off-nominal parameter values as well.
Resumo:
The present study reports coral mortality, driven primarily by coral diseases, around Shingle Island, Gulf of Mannar (GOM), Indian Ocean. In total, 2910 colonies were permanently monitored to assess the incidence of coral diseases and consequent mortality for 2 yr. Four types of lesions consistent with white band disease (WBD), black disease (BD), white plaque disease (WPD), and pink spot disease (PSD) were recorded from 4 coral genera: Montipora, Pocillopora, Acropora, and Porites. Porites were affected by 2 disease types, while the other 3 genera were affected by only 1 disease type. Overall disease prevalence increased from 8% (n = 233 colonies) to 41.9% (n = 1219) over the 2 yr study period. BD caused an unprecedented 100% mortality in Pocillopora, followed by 20.4 and 13.1% mortality from WBD in Montipora and Acropora, respectively. Mean disease progression rates of 0.8 +/- 1.0 and 0.6 +/- 0.5 cm mo(-1) over live coral colonies were observed for BD and WBD. Significant correlations between temperature and disease progression were observed for BD (r = 0.86, R-2 = 0.75, p < 0.001) and WBD (R-2 = 0.76, p < 0.001). This study revealed the increasing trend of disease prevalence and progression of disease over live coral in a relatively limited study area; further study should investigate the status of the entire coral reef in the GOM and the role of diseases in reef dynamics.
Resumo:
Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.
Resumo:
Impaired Akt1 signaling is observed in neurodegenerative diseases, including Parkinson's disease (PD). In PD models oxidative modification of Akt1 leads to its dephosphorylation and consequent loss of its kinase activity. To explore the underlying mechanism we exposed Neuro2A cells to cadmium, a pan inhibitor of protein thiol disulfide oxidoreductases, including glutaredoxin 1 (Grx1), or downregulated Grx1, which led to dephosphorylation of Akt1, loss of its kinase activity, and also decreased Akt1 protein levels. Mutation of cysteines to serines at 296 and 310 in Akt1 did not affect its basal kinase activity but abolished cadmium- and Grx1 downregulation-induced reduction in Akt1 kinase activity, indicating their critical role in redox modulation of Akt1 function and turnover. Cadmium-induced decrease in phosphorylated Akt1 correlated with increased association of wild-type (WT) Akt1 with PP2A, which was absent in the C296-310S Akt1 mutant and was also abolished by N-acetylcysteine treatment. Further, increased proteasomal degradation of Akt1 by cadmium was not seen in the C296-310S Akt1 mutant, indicating that oxidation of cysteine residues facilitates degradation of WT Akt1. Moreover, preventing oxidative modification of Akt1 cysteines 296 and 310 by mutating them to serines increased the cell survival effects of Akt1. Thus, in neurodegenerative states such as PD, maintaining the thiol status of cysteines 296 and 310 in Akt1 would be critical for Akt1 kinase activity and for preventing its degradation by proteasomes. Preventing downregulation of Akt signaling not only has long-range consequences for cell survival but could also affect the multiple roles that Ala plays, including in the Akt-mTOR signaling cascade. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Inflammatory arthritis is often manifested in finger joints. The growth of new or withdrawal of old blood vessels can be a sensitive marker for these diseases. Photoacoustic (PA) imaging has great potential in this respect since it allows the sensitive and highly resolved visualization of blood. We systematically investigated PA imaging of finger vasculature in healthy volunteers using a newly developed PA tomographic system. We present the PA results which show excellent detail of the vasculature. Vessels with diameters ranging between 100 mu m and 1.5 mm are visible along with details of the skin, including the epidermis and the subpapillary plexus. The focus of all the studies is at the proximal and distal interphalangeal joints, and in the context of ultimately visualizing the inflamed synovial membrane in patients. This work is important in laying the foundation for detailed research into PA imaging of the phalangeal vasculature in patients suffering from rheumatoid arthritis.