938 resultados para N-MYC DOWNSTREAM-REGULATED GENE 1 PROTEIN
Resumo:
Bone morphogenetic proteins (BMP) are firmly implicated as intra-ovarian regulators of follicle development and steroidogenesis. Here we report a microarray analysis showing that treatment of cultured bovine theca cells (TC) with BMP6 significantly (>2-fold; P<0.01) up- or down-regulated expression of 445 genes. Insulin-like peptide 3 (INSL3) was the most heavily down-regulated gene (-43-fold) with CYP17A1 and other key transcripts involved in TC steroidogenesis including LHCGR, INHA, STAR, CYP11A1 and HSD3B1 also down-regulated. BMP6 also reduced expression of NR5A1 encoding steroidogenic factor-1 known to target the promoter regions of the aforementioned genes. Real-time PCR confirmed these findings and also revealed a marked reduction in expression of INSL3 receptor (RXFP2). Secretion of INSL3 protein and androstenedione were also suppressed suggesting a functional link between BMP and INSL3 pathways in controlling androgen synthesis. RNAi-mediated knockdown of INSL3 reduced INSL3 mRNA and secreted protein level (75 and 94%, respectively) and elicited a 77% reduction in CYP17A1 mRNA level and 83% reduction in androstenedione secretion. Knockdown of RXFP2 also reduced CYP17A1 mRNA level (81%) and androstenedione secretion (88%). Conversely, treatment with exogenous (human) INSL3 increased androstenedione secretion ~2-fold. The CYP17 inhibitor abiraterone abolished androgen secretion and reduced expression of both INSL3 and RXFP2. Collectively, these findings indicate a positive autoregulatory role for INSL3 signaling in maintaining thecal androgen production, and visa versa. Moreover, BMP6-induced suppression of thecal androgen synthesis may be mediated, at least in part, by reduced INSL3-RXFP2 signaling.
Resumo:
Knowledge of the molecular biological changes underlying the process of embryogenesis is important for the improvement of somatic embryogenesis of coconut. Among the transcription factors that control the transition from vegetative to embryogenic growth, members of APETALA2/Ethylene-responsive element binding protein domain family play an important role in promoting embryo development. Significant insights into the role of AP2 genes have been obtained by the ectopic expression of AP2 sub family genes in transgenic Arabidopsis. A homolog of the AINTEGUMENTA-like gene that encodes the two AP2 domains and the linker region was identified in the coconut genome. Phylogenetic analysis showed that this gene, CnANT, encodes a protein that branched with BABY BOOM/PLETHORA clade in the AINTEGUMENTA-like major clade and was similar to the oil palm EgAP2-1 protein. According to real time RT-PCR results, higher expression of CnANT was observed in more mature zygotic embryos. Also, high CnANT expression was recorded in embryogenic callus compared to other stages of somatic embryogenesis. We examined the effect of ectopic CnANT expression on the development and regenerative capacity of transgenic Arabidopsis. Overexpression of CnANT in Arabidopsis induced hormone free regeneration of explants. Furthermore, ectopic expression of CnANT enhanced regeneration in vitro and suggested a role for this gene in cell proliferation during in vitro culture.
Resumo:
Long-term depression (LTD) is one of the paradigms used in vivo or ex vivo for studying memory formation. In order to identify genes with potential relevance for memory formation we used mouse organotypic hippocampal slice cultures in which chemical LTD was induced by applications of 3,5-dihydroxyphenylglycine (DHPG). The induction of chemical LTD was robust, as monitored electrophysiologically. Gene expression analysis after chemical LTD induction was performed using cDNA microarrays containing >7,000 probes. The DHPG-induced expression of immediate early genes (c-fos, junB, egr1 and nr4a1) was subsequently verified by TaqMan polymerase chain reaction. Bioinformatic analysis suggested a common regulator element [serum response factor (SRF)/Elk-1 binding sites] within the promoter region of these genes. Indeed, here we could show a DHPG-dependent binding of SRF at the SRF response element (SRE) site within the promoter region of c-fos and junB. However, SRF binding to egr1 promoter sites was constitutive. The phosphorylation of the ternary complex factor Elk-1 and its localization in the nucleus of hippocampal neurones after DHPG treatment was shown by immunofluorescence using a phosphospecific antibody. We suggest that LTD leads to SRF/Elk-1-regulated gene expression of immediate early transcription factors, which could in turn promote a second broader wave of gene expression.
Resumo:
Endothelin A (ET(A)) transmembrane receptors predominate in rat cardiac myocytes. These are G protein-coupled receptors whose actions are mediated by the G(q) heterotrimeric G proteins. Through these, ET-1 binding to ET(A)-receptors stimulates the hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to diacylglycerol and inositol 1,4,5-trisphosphate. Diacylglycerol remains in the membrane whereas inositol 1,4,5-trisphosphate is soluble (though its importance in the cardiac myocyte is still debated). Isoforms of the phospholipid-dependent protein kinase, protein kinase C (PKC), are intracellular receptors for diacylglycerol. Cytoplasmic nPKCdelta and nPKCepsilon detect increases in membrane diacylglycerols and translocate to the membrane. This brings about PKC activation, though modifications additional to binding to phospholipids and diacylglycerol are involved. The next event (probably associated with PKC activation) is the activation of the membrane-bound small G protein Ras by exchange of GTP for GDP. Ras.GTP loading translocates Raf family mitogen-activated protein kinase (MAPK) kinase kinases to the membrane, initiates the activation of Raf, and thus activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade. Over longer times, two analogous protein kinase cascades, the c-Jun N-terminal kinase and p38-mitogen-activated protein kinase cascades, become activated. As the signals originating from the ET(A) receptor are transmitted through these protein kinase pathways, other signalling molecules become phosphorylated, thus changing their biological activities. For example, ET-1 increases the expression of the c-jun transcription factor gene, and increases abundance and phosphorylation of c-Jun protein. These changes in c-Jun expression and phosphorylation are likely to be important in the regulation of gene transcription.
Resumo:
Dental pulp cells can differentiate toward an odontoblastic phenotype to produce reparative dentin beneath caries lesions. However, the mechanisms involved in pulp cell differentiation under pro-inflammatory stimuli have not been well-explored. Thus, we hypothesized that the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) could be a mediator involved in dental pulp cell differentiation toward an odontoblastic phenotype. We observed that TNF-alpha-challenged pulp cells exhibited increased mineralization and early and increased expression of dentin phosphoprotein (DPP), dentin sialoprotein (DSP), dentin matrix protein-1, and osteocalcin during a phase of reduced matrix metalloproteinase (MMP) expression. We investigated whether these events were related and found that p38, a mitogen-activated protein kinase, differentially regulated MMP-1 and DSP/DPP expression and mediated mineralization upon TNF-alpha treatment. These findings indicate that TNF-alpha stimulates differentiation of dental pulp cells toward an odontoblastic phenotype via p38, while negatively regulating MMP-1 expression.
Resumo:
Because the potential of yerba mate (Ilex paraguariensis) has been suggested in the management of obesity, the aim of the present study was to evaluate the effects of yerba mate extract on weight loss, obesity-related biochemical parameters, and the regulation of adipose tissue gene expression in high-fat diet-induced obesity in mice. Thirty animals were randomly assigned to three groups. The mice were introduced to standard or high-fat diets. After 12 weeks on a high-fat diet, mice were randomly assigned according to the treatment (water or yerba mate extract 1.0 g/-kg). After treatment intervention, plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and glucose were evaluated. Adipose tissue was examined to determine the mRNA levels of several genes such as tumor necrosis factor-alpha (TNF-alpha), leptin, interleukin-6 (IL-6), C-C motif chemokine ligand-2 (CCL2), CCL receptor-2 (CCR2), angiotensinogen, plasminogen activator inhibitor-1 (PAI-1), adiponectin, resistin, peroxisome proliferator-activated receptor-gamma(2) (PPAR-gamma(2)), uncoupling protein-1 (UCP1), and PPAR-gamma coactivator-1 alpha (PGC-1 alpha). The F4/80 levels were determined by immunoblotting. We found that obese mice treated with yerba mate exhibited marked attenuation of weight gain, adiposity, a decrease in epididymal fat-pad weight, and restoration of the serum levels of cholesterol, triglycerides, LDL cholesterol, and glucose. The gene and protein expression levels were directly regulated by the high-fat diet. After treatment with yerba mate extract, we observed a recovery of the expression levels. In conclusion, our data show that yerba mate extract has potent antiobesity activity in vivo. Additionally, we observed that the treatment had a modulatory effect on the expression of several genes related to obesity.
Resumo:
Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phosphoERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.
Resumo:
Background There is renewed interest in the role played by specific counter-regulatory mechanisms to control the inflammatory host response, poorly investigated in human pathology. Here, we monitored the expression of two anti-inflammatory mediators, annexin 1 and galectin-1, and assessed their potential link to glucocorticoids' (GCs) effective control of nasal polyposis (NP).Methods Total patterns of mRNA and protein expression were analysed by quantitative real-time PCR (qPCR) and Western blotting analyses, whereas ultrastructural immunocytochemistry was used for spatial localization and quantification of each mediator, focusing on mast cells, eosinophils and epithelial cells.Results Up-regulation of the annexin 1 gene, and down-regulation of galectin-1 gene, was detected in polypoid tissue compared with nasal mucosa. Patient treatment with betamethasone augmented galectin-1 protein expression in polyps. At the cellular level, control mast cells and eosinophils displayed higher annexin 1 expression, whereas marked galectin-1 immunolabelling was detected in the granule matrix of mast cells. Cells of glandular duct epithelium also displayed expression of both annexin 1 and galectin-1, augmented after treatment.Conclusion Mast cells and epithelial cells appeared to be pivotal cell types involved in the expression of both annexin 1 and galectin-1. It is possible that annexin 1 and galectin-1 could be functionally associated with a specific mechanism in NP and that GC exert at least part of their beneficial effects on the airway mucosa by up-regulating, in a specific cell target fashion, these anti-inflammatory agonists.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The retrovirus HTLV-1 is the etiological agent of the adult T-cell leukemia and HTLV-1 associated myelopathy/tropical spastic paraparesis. The proviral genome has 9,032 base pairs, showing regulatory and structural genes. The env gene encodes for the transmembrane glycoprotein gp 21. The development of methodologies for heterologous protein expression, as well as the acquisition of a cellular line that constituently expresses the recombinant, were the main goals of this work. The DNA fragment that encodes for gp 21 was amplified by nested-PCR and cloned into a pCR2.1-TOPO vector. After which, a sub-cloning was realized using the expressing vector pcDNA3.1+. The transfection of mammalian cells HEK 293 was performed transitorily and permanently. Production of the recombinant gp 21 was confirmed by flux cytometry experiments and the cell line producing protein will be used in immunogenicity assays.
Resumo:
Despite the wide distribution of transposable elements (TEs) in mammalian genomes, part of their evolutionary significance remains to be discovered. Today there is a substantial amount of evidence showing that TEs are involved in the generation of new exons in different species. In the present study, we searched 22,805 genes and reported the occurrence of TE-cassettes in coding sequences of 542 cow genes using the RepeatMasker program. Despite the significant number (542) of genes with TE insertions in exons only 14 (2.6%) of them were translated into protein, which we characterized as chimeric genes. From these chimeric genes, only the FAST kinase domains 3 (FASTKD3) gene, present on chromosome BTA 20, is a functional gene and showed evidence of the exaptation event. The genome sequence analysis showed that the last exon coding sequence of bovine FASTKD3 is ∼85% similar to the ART2A retrotransposon sequence. In addition, comparison among FASTKD3 proteins shows that the last exon is very divergent from those of Homo sapiens, Pan troglodytes and Canis familiares. We suggest that the gene structure of bovine FASTKD3 gene could have originated by several ectopic recombinations between TE copies. Additionally, the absence of TE sequences in all other species analyzed suggests that the TE insertion is clade-specific, mainly in the ruminant lineage. ©FUNPEC-RP.
Resumo:
Objective. The anti-inflammatory proteins annexin-A1 and galectin-1 have been associated with tumor progression. This scenario prompted us to investigate the relationship between the gene and protein expression of annexin-A1 (ANXA1/AnxA1) and galectin-1 (LGALS1/Gal-1) in an inflammatory gastric lesion as chronic gastritis (CG) and gastric adenocarcinoma (GA) and its association with H. pylori infection. Methods. We analyzed 40 samples of CG, 20 of GA, and 10 of normal mucosa (C) by the quantitative real-time PCR (qPCR) technique and the immunohistochemistry assay. Results. High ANXA1 mRNA expression levels were observed in 90% (36/40) of CG cases (mean relative quantification RQ = 4.26 ± 2.03) and in 80% (16/20) of GA cases (mean RQ = 4.38 ± 4.77). However, LGALS1 mRNA levels were high (mean RQ = 2.44 ± 3.26) in 60% (12/20) of the GA cases, while low expression was found in CG (mean RQ = 0.43 ± 3.13; P < 0.01). Normal mucosa showed modest immunoreactivity in stroma but not in epithelium, while stroma and epithelium displayed an intense immunostaining in CG and GA for both proteins. Conclusion. These results have provided evidence that galectin-1 and mainly annexin-A1 are overexpressed in both gastritis and gastric cancer, suggesting a strong association of these proteins with chronic gastric inflammation and carcinogenesis. © 2013 Yvana Cristina Jorge et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Background and Objective: Antimicrobial peptides, such as beta-defensins, secreted by gingival epithelial cells, are thought to play a major role in preventing periodontal diseases. In the present study, we investigated the ability of green tea polyphenols to induce human beta-defensin (hBD) secretion in gingival epithelial cells and to protect hBDs from proteolytic degradation by Porphyromonas gingivalis.Material and Methods: Gingival epithelial cells were treated with various amounts (25-200 mu g/mL) of green tea extract or epigallocatechin-3-gallate (EGCG). The secretion of hBD1 and hBD2 was measured using ELISAs, and gene expression was quantified by real-time PCR. The treatments were also carried out in the presence of specific kinase inhibitors to identify the signaling pathways involved in hBD secretion. The ability of green tea extract and EGCG to prevent hBD degradation by proteases of P. gingivalis present in a bacterial culture supernatant was evaluated by ELISA.Results: The secretion of hBD1 and hBD2 was up-regulated, in a dose-dependent manner, following the stimulation of gingival epithelial cells with a green tea extract or EGCG. Expression of the hBD gene in gingival epithelial cells treated with green tea polyphenols was also increased. EGCG-induced secretion of hBD1 and hBD2 appeared to involve extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Lastly, green tea extract and EGCG prevented the degradation of recombinant hBD1 and hBD2 by a culture supernatant of P. gingivalis.Conclusion: Green tea extract and EGCG, through their ability to induce hBD secretion by epithelial cells and to protect hBDs from proteolytic degradation by P. gingivalis, have the potential to strengthen the epithelial antimicrobial barrier. Future clinical studies will indicate whether these polyphenols represent a valuable therapeutic agent for treating/preventing periodontal diseases.