892 resultados para Multi-objective algorithm
Resumo:
Esta Tesis tiene como objetivo principal el desarrollo de métodos de identificación del daño que sean robustos y fiables, enfocados a sistemas estructurales experimentales, fundamentalmente a las estructuras de hormigón armado reforzadas externamente con bandas fibras de polímeros reforzados (FRP). El modo de fallo de este tipo de sistema estructural es crítico, pues generalmente es debido a un despegue repentino y frágil de la banda del refuerzo FRP originado en grietas intermedias causadas por la flexión. La detección de este despegue en su fase inicial es fundamental para prevenir fallos futuros, que pueden ser catastróficos. Inicialmente, se lleva a cabo una revisión del método de la Impedancia Electro-Mecánica (EMI), de cara a exponer sus capacidades para la detección de daño. Una vez la tecnología apropiada es seleccionada, lo que incluye un analizador de impedancias así como novedosos sensores PZT para monitorización inteligente, se ha diseñado un procedimiento automático basado en los registros de impedancias de distintas estructuras de laboratorio. Basándonos en el hecho de que las mediciones de impedancias son posibles gracias a una colocación adecuada de una red de sensores PZT, la estimación de la presencia de daño se realiza analizando los resultados de distintos indicadores de daño obtenidos de la literatura. Para que este proceso sea automático y que no sean necesarios conocimientos previos sobre el método EMI para realizar un experimento, se ha diseñado e implementado un Interfaz Gráfico de Usuario, transformando la medición de impedancias en un proceso fácil e intuitivo. Se evalúa entonces el daño a través de los correspondientes índices de daño, intentando estimar no sólo su severidad, sino también su localización aproximada. El desarrollo de estos experimentos en cualquier estructura genera grandes cantidades de datos que han de ser procesados, y algunas veces los índices de daño no son suficientes para una evaluación completa de la integridad de una estructura. En la mayoría de los casos se pueden encontrar patrones de daño en los datos, pero no se tiene información a priori del estado de la estructura. En este punto, se ha hecho una importante investigación en técnicas de reconocimiento de patrones particularmente en aprendizaje no supervisado, encontrando aplicaciones interesantes en el campo de la medicina. De ahí surge una idea creativa e innovadora: detectar y seguir la evolución del daño en distintas estructuras como si se tratase de un cáncer propagándose por el cuerpo humano. En ese sentido, las lecturas de impedancias se emplean como información intrínseca de la salud de la propia estructura, de forma que se pueden aplicar las mismas técnicas que las empleadas en la investigación del cáncer. En este caso, se ha aplicado un algoritmo de clasificación jerárquica dado que ilustra además la clasificación de los datos de forma gráfica, incluyendo información cualitativa y cuantitativa sobre el daño. Se ha investigado la efectividad de este procedimiento a través de tres estructuras de laboratorio, como son una viga de aluminio, una unión atornillada de aluminio y un bloque de hormigón reforzado con FRP. La primera ayuda a mostrar la efectividad del método en sencillos escenarios de daño simple y múltiple, de forma que las conclusiones extraídas se aplican sobre los otros dos, diseñados para simular condiciones de despegue en distintas estructuras. Demostrada la efectividad del método de clasificación jerárquica de lecturas de impedancias, se aplica el procedimiento sobre las estructuras de hormigón armado reforzadas con bandas de FRP objeto de esta tesis, detectando y clasificando cada estado de daño. Finalmente, y como alternativa al anterior procedimiento, se propone un método para la monitorización continua de la interfase FRP-Hormigón, a través de una red de sensores FBG permanentemente instalados en dicha interfase. De esta forma, se obtienen medidas de deformación de la interfase en condiciones de carga continua, para ser implementadas en un modelo de optimización multiobjetivo, cuya solución se haya por medio de una expansión multiobjetivo del método Particle Swarm Optimization (PSO). La fiabilidad de este último método de detección se investiga a través de sendos ejemplos tanto numéricos como experimentales. ABSTRACT This thesis aims to develop robust and reliable damage identification methods focused on experimental structural systems, in particular Reinforced Concrete (RC) structures externally strengthened with Fiber Reinforced Polymers (FRP) strips. The failure mode of this type of structural system is critical, since it is usually due to sudden and brittle debonding of the FRP reinforcement originating from intermediate flexural cracks. Detection of the debonding in its initial stage is essential thus to prevent future failure, which might be catastrophic. Initially, a revision of the Electro-Mechanical Impedance (EMI) method is carried out, in order to expose its capabilities for local damage detection. Once the appropriate technology is selected, which includes impedance analyzer as well as novel PZT sensors for smart monitoring, an automated procedure has been design based on the impedance signatures of several lab-scale structures. On the basis that capturing impedance measurements is possible thanks to an adequately deployed PZT sensor network, the estimation of damage presence is done by analyzing the results of different damage indices obtained from the literature. In order to make this process automatic so that it is not necessary a priori knowledge of the EMI method to carry out an experimental test, a Graphical User Interface has been designed, turning the impedance measurements into an easy and intuitive procedure. Damage is then assessed through the analysis of the corresponding damage indices, trying to estimate not only the damage severity, but also its approximate location. The development of these tests on any kind of structure generates large amounts of data to be processed, and sometimes the information provided by damage indices is not enough to achieve a complete analysis of the structural health condition. In most of the cases, some damage patterns can be found in the data, but none a priori knowledge of the health condition is given for any structure. At this point, an important research on pattern recognition techniques has been carried out, particularly on unsupervised learning techniques, finding interesting applications in the medicine field. From this investigation, a creative and innovative idea arose: to detect and track the evolution of damage in different structures, as if it were a cancer propagating through a human body. In that sense, the impedance signatures are used to give intrinsic information of the health condition of the structure, so that the same clustering algorithms applied in the cancer research can be applied to the problem addressed in this dissertation. Hierarchical clustering is then applied since it also provides a graphical display of the clustered data, including quantitative and qualitative information about damage. The performance of this approach is firstly investigated using three lab-scale structures, such as a simple aluminium beam, a bolt-jointed aluminium beam and an FRP-strengthened concrete specimen. The first one shows the performance of the method on simple single and multiple damage scenarios, so that the first conclusions can be extracted and applied to the other two experimental tests, which are designed to simulate a debonding condition on different structures. Once the performance of the impedance-based hierarchical clustering method is proven to be successful, it is then applied to the structural system studied in this dissertation, the RC structures externally strengthened with FRP strips, where the debonding failure in the interface between the FRP and the concrete is successfully detected and classified, proving thus the feasibility of this method. Finally, as an alternative to the previous approach, a continuous monitoring procedure of the FRP-Concrete interface is proposed, based on an FBGsensors Network permanently deployed within that interface. In this way, strain measurements can be obtained under controlled loading conditions, and then they are used in order to implement a multi-objective model updating method solved by a multi-objective expansion of the Particle Swarm Optimization (PSO) method. The feasibility of this last proposal is investigated and successfully proven on both numerical and experimental RC beams strengthened with FRP.
Resumo:
El empleo de refuerzos de FRP en vigas de hormigón armado es cada vez más frecuente por sus numerosas ventajas frente a otros métodos más tradicionales. Durante los últimos años, la técnica FRP-NSM, consistente en introducir barras de FRP sobre el recubrimiento de una viga de hormigón, se ha posicionado como uno de los mejores métodos de refuerzo y rehabilitación de estructuras de hormigón armado, tanto por su facilidad de montaje y mantenimiento, como por su rendimiento para aumentar la capacidad resistente de dichas estructuras. Si bien el refuerzo a flexión ha sido ampliamente desarrollado y estudiado hasta la fecha, no sucede lo mismo con el refuerzo a cortante, debido principalmente a su gran complejidad. Sin embargo, se debería dedicar más estudio a este tipo de refuerzo si se pretenden conservar los criterios de diseño en estructuras de hormigón armado, los cuales están basados en evitar el fallo a cortante por sus consecuencias catastróficas Esta ausencia de información y de normativa es la que justifica esta tesis doctoral. En este pro-yecto se van a desarrollar dos metodologías alternativas, que permiten estimar la capacidad resistente de vigas de hormigón armado, reforzadas a cortante mediante la técnica FRP-NSM. El primer método aplicado consiste en la implementación de una red neuronal artificial capaz de predecir adecuadamente la resistencia a cortante de vigas reforzadas con este método a partir de experimentos anteriores. Asimismo, a partir de la red se han llevado a cabo algunos estudios a fin de comprender mejor la influencia real de algunos parámetros de la viga y del refuerzo sobre la resistencia a cortante con el propósito de lograr diseños más seguros de este tipo de refuerzo. Una configuración óptima de la red requiere discriminar adecuadamente de entre los numerosos parámetros (geométricos y de material) que pueden influir en el compor-tamiento resistente de la viga, para lo cual se han llevado a cabo diversos estudios y pruebas. Mediante el segundo método, se desarrolla una ecuación de proyecto que permite, de forma sencilla, estimar la capacidad de vigas reforzadas a cortante con FRP-NSM, la cual podría ser propuesta para las principales guías de diseño. Para alcanzar este objetivo, se plantea un pro-blema de optimización multiobjetivo a partir de resultados de ensayos experimentales llevados a cabo sobre vigas de hormigón armado con y sin refuerzo de FRP. El problema multiobjetivo se resuelve mediante algoritmos genéticos, en concreto el algoritmo NSGA-II, por ser más apropiado para problemas con varias funciones objetivo que los métodos de optimización clásicos. Mediante una comparativa de las predicciones realizadas con ambos métodos y de los resulta-dos de ensayos experimentales se podrán establecer las ventajas e inconvenientes derivadas de la aplicación de cada una de las dos metodologías. Asimismo, se llevará a cabo un análisis paramétrico con ambos enfoques a fin de intentar determinar la sensibilidad de aquellos pa-rámetros más sensibles a este tipo de refuerzo. Finalmente, se realizará un análisis estadístico de la fiabilidad de las ecuaciones de diseño deri-vadas de la optimización multiobjetivo. Con dicho análisis se puede estimar la capacidad resis-tente de una viga reforzada a cortante con FRP-NSM dentro de un margen de seguridad espe-cificado a priori. ABSTRACT The use of externally bonded (EB) fibre-reinforced polymer (FRP) composites has gained acceptance during the last two decades in the construction engineering community, particularly in the rehabilitation of reinforced concrete (RC) structures. Currently, to increase the shear resistance of RC beams, FRP sheets are externally bonded (EB-FRP) and applied on the external side surface of the beams to be strengthened with different configurations. Of more recent application, the near-surface mounted FRP bar (NSM-FRP) method is another technique successfully used to increase the shear resistance of RC beams. In the NSM method, FRP rods are embedded into grooves intentionally prepared in the concrete cover of the side faces of RC beams. While flexural strengthening has been widely developed and studied so far, the same doesn´t occur to shearing strength mainly due to its great complexity. Nevertheless, if design criteria are to be preserved more research should be done to this sort of strength, which are based on avoiding shear failure and its catastrophic consequences. However, in spite of this, accurately calculating the shear capacity of FRP shear strengthened RC beams remains a complex challenge that has not yet been fully resolved due to the numerous variables involved in the procedure. The objective of this Thesis is to develop methodologies to evaluate the capacity of FRP shear strengthened RC beams by dealing with the problem from a different point of view to the numerical modeling approach by using artificial intelligence techniques. With this purpose two different approaches have been developed: one concerned with the use of artificial neural networks and the other based on the implementation of an optimization approach developed jointly with the use of artificial neural networks (ANNs) and solved with genetic algorithms (GAs). With these approaches some of the difficulties concerned regarding the numerical modeling can be overcome. As an alternative tool to conventional numerical techniques, neural networks do not provide closed form solutions for modeling problems but do, however, offer a complex and accurate solution based on a representative set of historical examples of the relationship. Furthermore, they can adapt solutions over time to include new data. On the other hand, as a second proposal, an optimization approach has also been developed to implement simple yet accurate shear design equations for this kind of strengthening. This approach is developed in a multi-objective framework by considering experimental results of RC beams with and without NSM-FRP. Furthermore, the results obtained with the previous scheme based on ANNs are also used as a filter to choose the parameters to include in the design equations. Genetic algorithms are used to solve the optimization problem since they are especially suitable for solving multi-objective problems when compared to standard optimization methods. The key features of the two proposed procedures are outlined and their performance in predicting the capacity of NSM-FRP shear strengthened RC beams is evaluated by comparison with results from experimental tests and with predictions obtained using a simplified numerical model. A sensitivity study of the predictions of both models for the input parameters is also carried out.
Resumo:
El principal objetivo de esta tesis es el desarrollo de métodos de síntesis de diagramas de radiación de agrupaciones de antenas, en donde se realiza una caracterización electromagnética rigurosa de los elementos radiantes y de los acoplos mutuos existentes. Esta caracterización no se realiza habitualmente en la gran mayoría de métodos de síntesis encontrados en la literatura, debido fundamentalmente a dos razones. Por un lado, se considera que el diagrama de radiación de un array de antenas se puede aproximar con el factor de array que únicamente tiene en cuenta la posición de los elementos y las excitaciones aplicadas a los mismos. Sin embargo, como se mostrará en esta tesis, en múltiples ocasiones un riguroso análisis de los elementos radiantes y del acoplo mutuo entre ellos es importante ya que los resultados obtenidos pueden ser notablemente diferentes. Por otro lado, no es sencillo combinar un método de análisis electromagnético con un proceso de síntesis de diagramas de radiación. Los métodos de análisis de agrupaciones de antenas suelen ser costosos computacionalmente, ya que son estructuras grandes en términos de longitudes de onda. Generalmente, un diseño de un problema electromagnético suele comprender varios análisis de la estructura, dependiendo de las variaciones de las características, lo que hace este proceso muy costoso. Dos métodos se utilizan en esta tesis para el análisis de los arrays acoplados. Ambos están basados en el método de los elementos finitos, la descomposición de dominio y el análisis modal para analizar la estructura radiante y han sido desarrollados en el grupo de investigación donde se engloba esta tesis. El primero de ellos es una técnica de análisis de arrays finitos basado en la aproximación de array infinito. Su uso es indicado para arrays planos de grandes dimensiones con elementos equiespaciados. El segundo caracteriza el array y el acoplo mutuo entre elementos a partir de una expansión en modos esféricos del campo radiado por cada uno de los elementos. Este método calcula los acoplos entre los diferentes elementos del array usando las propiedades de traslación y rotación de los modos esféricos. Es capaz de analizar agrupaciones de elementos distribuidos de forma arbitraria. Ambas técnicas utilizan una formulación matricial que caracteriza de forma rigurosa el campo radiado por el array. Esto las hace muy apropiadas para su posterior uso en una herramienta de diseño, como los métodos de síntesis desarrollados en esta tesis. Los resultados obtenidos por estas técnicas de síntesis, que incluyen métodos rigurosos de análisis, son consecuentemente más precisos. La síntesis de arrays consiste en modificar uno o varios parámetros de las agrupaciones de antenas buscando unas determinadas especificaciones de las características de radiación. Los parámetros utilizados como variables de optimización pueden ser varios. Los más utilizados son las excitaciones aplicadas a los elementos, pero también es posible modificar otros parámetros de diseño como son las posiciones de los elementos o las rotaciones de estos. Los objetivos de las síntesis pueden ser dirigir el haz o haces en una determinada dirección o conformar el haz con formas arbitrarias. Además, es posible minimizar el nivel de los lóbulos secundarios o del rizado en las regiones deseadas, imponer nulos que evitan posibles interferencias o reducir el nivel de la componente contrapolar. El método para el análisis de arrays finitos basado en la aproximación de array infinito considera un array finito como un array infinito con un número finito de elementos excitados. Los elementos no excitados están físicamente presentes y pueden presentar tres diferentes terminaciones, corto-circuito, circuito abierto y adaptados. Cada una de estas terminaciones simulará mejor el entorno real en el que el array se encuentre. Este método de análisis se integra en la tesis con dos métodos diferentes de síntesis de diagramas de radiación. En el primero de ellos se presenta un método basado en programación lineal en donde es posible dirigir el haz o haces, en la dirección deseada, además de ejercer un control sobre los lóbulos secundarios o imponer nulos. Este método es muy eficiente y obtiene soluciones óptimas. El mismo método de análisis es también aplicado a un método de conformación de haz, en donde un problema originalmente no convexo (y de difícil solución) es transformado en un problema convexo imponiendo restricciones de simetría, resolviendo de este modo eficientemente un problema complejo. Con este método es posible diseñar diagramas de radiación con haces de forma arbitraria, ejerciendo un control en el rizado del lóbulo principal, así como en el nivel de los lóbulos secundarios. El método de análisis de arrays basado en la expansión en modos esféricos se integra en la tesis con tres técnicas de síntesis de diagramas de radiación. Se propone inicialmente una síntesis de conformación del haz basado en el método de la recuperación de fase resuelta de forma iterativa mediante métodos convexos, en donde relajando las restricciones del problema original se consiguen unas soluciones cercanas a las óptimas de manera eficiente. Dos métodos de síntesis se han propuesto, donde las variables de optimización son las posiciones y las rotaciones de los elementos respectivamente. Se define una función de coste basada en la intensidad de radiación, la cual es minimizada de forma iterativa con el método del gradiente. Ambos métodos reducen el nivel de los lóbulos secundarios minimizando una función de coste. El gradiente de la función de coste es obtenido en términos de la variable de optimización en cada método. Esta función de coste está formada por la expresión rigurosa de la intensidad de radiación y por una función de peso definida por el usuario para imponer prioridades sobre las diferentes regiones de radiación, si así se desea. Por último, se presenta un método en el cual, mediante técnicas de programación entera, se buscan las fases discretas que generan un diagrama de radiación lo más cercano posible al deseado. Con este método se obtienen diseños que minimizan el coste de fabricación. En cada uno de las diferentes técnicas propuestas en la tesis, se presentan resultados con elementos reales que muestran las capacidades y posibilidades que los métodos ofrecen. Se comparan los resultados con otros métodos disponibles en la literatura. Se muestra la importancia de tener en cuenta los diagramas de los elementos reales y los acoplos mutuos en el proceso de síntesis y se comparan los resultados obtenidos con herramientas de software comerciales. ABSTRACT The main objective of this thesis is the development of optimization methods for the radiation pattern synthesis of array antennas in which a rigorous electromagnetic characterization of the radiators and the mutual coupling between them is performed. The electromagnetic characterization is usually overlooked in most of the available synthesis methods in the literature, this is mainly due to two reasons. On the one hand, it is argued that the radiation pattern of an array is mainly influenced by the array factor and that the mutual coupling plays a minor role. As it is shown in this thesis, the mutual coupling and the rigorous characterization of the array antenna influences significantly in the array performance and its computation leads to differences in the results obtained. On the other hand, it is difficult to introduce an analysis procedure into a synthesis technique. The analysis of array antennas is generally expensive computationally as the structure to analyze is large in terms of wavelengths. A synthesis method requires to carry out a large number of analysis, this makes the synthesis problem very expensive computationally or intractable in some cases. Two methods have been used in this thesis for the analysis of coupled antenna arrays, both of them have been developed in the research group in which this thesis is involved. They are based on the finite element method (FEM), the domain decomposition and the modal analysis. The first one obtains a finite array characterization with the results obtained from the infinite array approach. It is specially indicated for the analysis of large arrays with equispaced elements. The second one characterizes the array elements and the mutual coupling between them with a spherical wave expansion of the radiated field by each element. The mutual coupling is computed using the properties of translation and rotation of spherical waves. This method is able to analyze arrays with elements placed on an arbitrary distribution. Both techniques provide a matrix formulation that makes them very suitable for being integrated in synthesis techniques, the results obtained from these synthesis methods will be very accurate. The array synthesis stands for the modification of one or several array parameters looking for some desired specifications of the radiation pattern. The array parameters used as optimization variables are usually the excitation weights applied to the array elements, but some other array characteristics can be used as well, such as the array elements positions or rotations. The desired specifications may be to steer the beam towards any specific direction or to generate shaped beams with arbitrary geometry. Further characteristics can be handled as well, such as minimize the side lobe level in some other radiating regions, to minimize the ripple of the shaped beam, to take control over the cross-polar component or to impose nulls on the radiation pattern to avoid possible interferences from specific directions. The analysis method based on the infinite array approach considers an infinite array with a finite number of excited elements. The infinite non-excited elements are physically present and may have three different terminations, short-circuit, open circuit and match terminated. Each of this terminations is a better simulation for the real environment of the array. This method is used in this thesis for the development of two synthesis methods. In the first one, a multi-objective radiation pattern synthesis is presented, in which it is possible to steer the beam or beams in desired directions, minimizing the side lobe level and with the possibility of imposing nulls in the radiation pattern. This method is very efficient and obtains optimal solutions as it is based on convex programming. The same analysis method is used in a shaped beam technique in which an originally non-convex problem is transformed into a convex one applying symmetry restrictions, thus solving a complex problem in an efficient way. This method allows the synthesis of shaped beam radiation patterns controlling the ripple in the mainlobe and the side lobe level. The analysis method based on the spherical wave expansion is applied for different synthesis techniques of the radiation pattern of coupled arrays. A shaped beam synthesis is presented, in which a convex formulation is proposed based on the phase retrieval method. In this technique, an originally non-convex problem is solved using a relaxation and solving a convex problems iteratively. Two methods are proposed based on the gradient method. A cost function is defined involving the radiation intensity of the coupled array and a weighting function that provides more degrees of freedom to the designer. The gradient of the cost function is computed with respect to the positions in one of them and the rotations of the elements in the second one. The elements are moved or rotated iteratively following the results of the gradient. A highly non-convex problem is solved very efficiently, obtaining very good results that are dependent on the starting point. Finally, an optimization method is presented where discrete digital phases are synthesized providing a radiation pattern as close as possible to the desired one. The problem is solved using linear integer programming procedures obtaining array designs that greatly reduce the fabrication costs. Results are provided for every method showing the capabilities that the above mentioned methods offer. The results obtained are compared with available methods in the literature. The importance of introducing a rigorous analysis into the synthesis method is emphasized and the results obtained are compared with a commercial software, showing good agreement.
Resumo:
Los regímenes fiscales que se aplican a los contratos de exploración y desarrollo de petróleo y gas, entre los propietarios del recurso natural (generalmente el país soberano representado por su gobierno) y las compañías operadoras internacionales (COI) que aportan capital, experiencia y tecnología, no han sabido responder a la reciente escalada de los precios del crudo y han dado lugar a que los países productores no estén recibiendo la parte de renta correspondiente al incremento de precios. Esto ha provocado una ola de renegociaciones llegándose incluso a la imposición unilateral de nuevos términos por parte de algunos gobiernos entre los que destacan el caso de Venezuela y Argentina, por ser los más radicales. El objetivo del presente trabajo es el estudio y diseño de un régimen fiscal que, en las actuales condiciones del mercado, consiga que los gobiernos optimicen sus ingresos incentivando la inversión. Para ello se simulan los efectos de siete tipos diferentes de fiscalidades aplicadas a dos yacimientos de características muy distintas y se valoran los resultados. El modelo utilizado para la simulación es el modelo de escenarios, ampliamente utilizado tanto por la comunidad académica como por la industria para comparar el comportamiento de diferentes regímenes fiscales. Para decidir cuál de las fiscalidades estudiadas es la mejor se emplea un método optimización multicriterio. Los criterios que se han aplicado para valorar los resultados recogen la opinión de expertos de la industria sobre qué factores se consideran deseables en un contrato a la hora invertir. El resultado permite delinear las características de un marco fiscal ideal del tipo acuerdo de producción compartida, sin royalties, con un límite alto de recuperación de crudo coste que permita recobrar todos los costes operativos y una parte de los de capital en cualquier escenario de precios, un reparto de los beneficios en función de un indicador de rentabilidad como es la TIR, con un mecanismo de recuperación de costes adicional (uplift) que incentive la inversión y con disposiciones que premien la exploración y más la de alto riesgo como la amortización acelerada de los gastos de capital o una ampliación de la cláusula de ringfence. Un contrato con estas características permitirá al gobierno optimizar los ingresos obtenidos de sus reservas de petróleo y gas maximizando la producción al atraer inversión para la exploración y mejorar la recuperación alargando la vida del yacimiento. Además al reducir el riesgo percibido por el inversor que recupera sus costes, menor será la rentabilidad exigida al capital invertido y por tanto mayor la parte de esos ingresos que irá a parar al gobierno del país productor. ABSTRACT Fiscal systems used in petroleum arrangements between the owners of the resource (usually a sovereign country represented by its government) and the international operating company (IOC) that provides capital, knowhow and technology, have failed to allocate profits from the recent escalation of oil prices and have resulted in producing countries not receiving the right share of that increase. This has caused a wave of renegotiations and even in some cases, like Venezuela and Argentina, government unilaterally imposed new terms. This paper aims to outline desirable features of a petroleum fiscal system, under current market conditions, for governments to maximize their revenues while encouraging investment. Firstly the impact of seven different types of fiscal regimes is studied with a simulation for two separate oil fields using the scenario approach. The scenario approach has been frequently employed by academic and business researchers to compare the performance of diverse fiscal regimes. In order to decide which of the fiscal regimes’ performance is best we used a multi-objective optimization decision making approach to assess the results. The criteria applied gather the preferences of a panel of industry experts about the desirable features of a contract when making investment decisions. The results show the characteristics of an ideal fiscal framework that closely resembles a production sharing contract, with no royalty payment and a high cost recovery limit that allows the IOC to recover all operating expenses and a share of its capital costs under any price scenario, a profit oil sharing mechanism based on a profitability indicator such as the ROR, with an uplift that allows to recover an additional percentage of capital costs and provisions that promote exploration investment, specially high-risk exploration, such as accelerated depreciation for capital costs and a wide definition of the ringfence clause. A contract with these features will allow governments to optimize overall revenues from its petroleum resources maximizing production by promoting investment on exploration and extending oil fields life. Also by reducing the investor’s perception of risk it will reduce the minimum return to capital required by the IOC and therefore it will increase the government share of those revenues.
Resumo:
RESUMO Simulações de aeroacústica computacional demandam uma quantidade considerável de tempo, o que torna complicada a realização de estudos paramétricos. O presente trabalho propõe uma metodologia viável para otimização aeroacústica. Através da análise numérica utilizando dinâmica dos fluidos computacional, foi estudada a aplicação de uma placa separadora desacoplada como método de controle passivo da esteira turbulenta de um cilindro e avaliou-se a irradiação de ruído causado pela interação do escoamento com ambos os corpos, empregando ferramentas de aeroacústica computacional baseadas no método de Ffowcs-Williams e Hawkings. Algumas abordagens distintas de metodologias de otimização de projeto foram aplicadas neste problema, com o objetivo de chegar a uma configuração otimizada que permita a redução do nível sonoro ao longe. Assim, utilizando uma ferramenta de otimização multidisciplinar, pode-se avaliar a capacidade de modelos heurísticos e a grande vantagem do emprego de algoritmos baseados em método de superfície de resposta quando aplicados em um problema não linear, pois requerem a avaliação de um menor número de alternativas para se obter um ponto ótimo. Além disso, foi possível identificar e agrupar os resultados em 5 clusters baseados em seus parâmetros geométricos, nível de pressão sonora global e o valor quadrático médio do coeficiente de arrasto, confirmando a eficiência da aplicação de placas separadoras longas desacopladas posicionadas próximas ao cilindro na estabilização da esteira turbulenta, enquanto que o posicionamento de placas acima de um espaçamento crítico aumentou o nível de pressão acústica irradiado devido à formação de vórtices no espaço entre o cilindro e a placa separadora.
Resumo:
This work addresses the optimization of ammonia–water absorption cycles for cooling and refrigeration applications with economic and environmental concerns. Our approach combines the capabilities of process simulation, multi-objective optimization (MOO), cost analysis and life cycle assessment (LCA). The optimization task is posed in mathematical terms as a multi-objective mixed-integer nonlinear program (moMINLP) that seeks to minimize the total annualized cost and environmental impact of the cycle. This moMINLP is solved by an outer-approximation strategy that iterates between primal nonlinear programming (NLP) subproblems with fixed binaries and a tailored mixed-integer linear programming (MILP) model. The capabilities of our approach are illustrated through its application to an ammonia–water absorption cycle used in cooling and refrigeration applications.
Resumo:
Convex vector (or multi-objective) semi-infinite optimization deals with the simultaneous minimization of finitely many convex scalar functions subject to infinitely many convex constraints. This paper provides characterizations of the weakly efficient, efficient and properly efficient points in terms of cones involving the data and Karush–Kuhn–Tucker conditions. The latter characterizations rely on different local and global constraint qualifications. The results in this paper generalize those obtained by the same authors on linear vector semi-infinite optimization problems.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
This paper introduces a new mathematical method for improving the discrimination power of data envelopment analysis and to completely rank the efficient decision-making units (DMUs). Fuzzy concept is utilised. For this purpose, first all DMUs are evaluated with the CCR model. Thereafter, the resulted weights for each output are considered as fuzzy sets and are then converted to fuzzy numbers. The introduced model is a multi-objective linear model, endpoints of which are the highest and lowest of the weighted values. An added advantage of the model is its ability to handle the infeasibility situation sometimes faced by previously introduced models.
Resumo:
Swarm intelligence is a popular paradigm for algorithm design. Frequently drawing inspiration from natural systems, it assigns simple rules to a set of agents with the aim that, through local interactions, they collectively solve some global problem. Current variants of a popular swarm based optimization algorithm, particle swarm optimization (PSO), are investigated with a focus on premature convergence. A novel variant, dispersive PSO, is proposed to address this problem and is shown to lead to increased robustness and performance compared to current PSO algorithms. A nature inspired decentralised multi-agent algorithm is proposed to solve a constrained problem of distributed task allocation. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. New rules for specialisation are proposed and are shown to exhibit improved eciency and exibility compared to existing ones. These new rules are compared with a market based approach to agent control. The eciency (average number of tasks performed), the exibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved eciency and robustness. Evolutionary algorithms are employed, both to optimize parameters and to allow the various rules to evolve and compete. We also observe extinction and speciation. In order to interpret algorithm performance we analyse the causes of eciency loss, derive theoretical upper bounds for the eciency, as well as a complete theoretical description of a non-trivial case, and compare these with the experimental results. Motivated by this work we introduce agent "memory" (the possibility for agents to develop preferences for certain cities) and show that not only does it lead to emergent cooperation between agents, but also to a signicant increase in efficiency.
Resumo:
A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task allocation in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. The problem is constrained so that agents are penalised for switching mail types. When an agent process a mail batch of different type to the previous one, it must undergo a change-over, with repeated change-overs rendering the agent inactive. The efficiency (average amount of mail retrieved), and the flexibility (ability of the agents to react to changes in the environment) are investigated both in static and dynamic environments and with respect to sudden changes. New rules for mail selection and specialisation are proposed and are shown to exhibit improved efficiency and flexibility compared to existing ones. We employ a evolutionary algorithm which allows the various rules to evolve and compete. Apart from obtaining optimised parameters for the various rules for any environment, we also observe extinction and speciation.
Resumo:
A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task selection in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without a priori knowledge of the available mail at the cities or inter-agent communication. In order to process a different mail type than the previous one, agents must undergo a change-over during which it remains inactive. We propose a threshold based algorithm in order to maximise the overall efficiency (the average amount of mail collected). We show that memory, i.e. the possibility for agents to develop preferences for certain cities, not only leads to emergent cooperation between agents, but also to a significant increase in efficiency (above the theoretical upper limit for any memoryless algorithm), and we systematically investigate the influence of the various model parameters. Finally, we demonstrate the flexibility of the algorithm to changes in circumstances, and its excellent scalability.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
Cleavage by the proteasome is responsible for generating the C terminus of T-cell epitopes. Modeling the process of proteasome cleavage as part of a multi-step algorithm for T-cell epitope prediction will reduce the number of non-binders and increase the overall accuracy of the predictive algorithm. Quantitative matrix-based models for prediction of the proteasome cleavage sites in a protein were developed using a training set of 489 naturally processed T-cell epitopes (nonamer peptides) associated with HLA-A and HLA-B molecules. The models were validated using an external test set of 227 T-cell epitopes. The performance of the models was good, identifying 76% of the C-termini correctly. The best model of proteasome cleavage was incorporated as the first step in a three-step algorithm for T-cell epitope prediction, where subsequent steps predicted TAP affinity and MHC binding using previously derived models.
Resumo:
Background - The main processing pathway for MHC class I ligands involves degradation of proteins by the proteasome, followed by transport of products by the transporter associated with antigen processing (TAP) to the endoplasmic reticulum (ER), where peptides are bound by MHC class I molecules, and then presented on the cell surface by MHCs. The whole process is modeled here using an integrated approach, which we call EpiJen. EpiJen is based on quantitative matrices, derived by the additive method, and applied successively to select epitopes. EpiJen is available free online. Results - To identify epitopes, a source protein is passed through four steps: proteasome cleavage, TAP transport, MHC binding and epitope selection. At each stage, different proportions of non-epitopes are eliminated. The final set of peptides represents no more than 5% of the whole protein sequence and will contain 85% of the true epitopes, as indicated by external validation. Compared to other integrated methods (NetCTL, WAPP and SMM), EpiJen performs best, predicting 61 of the 99 HIV epitopes used in this study. Conclusion - EpiJen is a reliable multi-step algorithm for T cell epitope prediction, which belongs to the next generation of in silico T cell epitope identification methods. These methods aim to reduce subsequent experimental work by improving the success rate of epitope prediction.