969 resultados para Motion estimation
Resumo:
CFO and I/Q mismatch could cause significant performance degradation to OFDM systems. Their estimation and compensation are generally difficult as they are entangled in the received signal. In this paper, we propose some low-complexity estimation and compensation schemes in the receiver, which are robust to various CFO and I/Q mismatch values although the performance is slightly degraded for very small CFO. These schemes consist of three steps: forming a cosine estimator free of I/Q mismatch interference, estimating I/Q mismatch using the estimated cosine value, and forming a sine estimator using samples after I/Q mismatch compensation. These estimators are based on the perception that an estimate of cosine serves much better as the basis for I/Q mismatch estimation than the estimate of CFO derived from the cosine function. Simulation results show that the proposed schemes can improve system performance significantly, and they are robust to CFO and I/Q mismatch.
Resumo:
This paper proposes a new prognosis model based on the technique for health state estimation of machines for accurate assessment of the remnant life. For the evaluation of health stages of machines, the Support Vector Machine (SVM) classifier was employed to obtain the probability of each health state. Two case studies involving bearing failures were used to validate the proposed model. Simulated bearing failure data and experimental data from an accelerated bearing test rig were used to train and test the model. The result obtained is very encouraging and shows that the proposed prognostic model produces promising results and has the potential to be used as an estimation tool for machine remnant life prediction.
Resumo:
In sport and exercise biomechanics, forward dynamics analyses or simulations have frequently been used in attempts to establish optimal techniques for performance of a wide range of motor activities. However, the accuracy and validity of these simulations is largely dependent on the complexity of the mathematical model used to represent the neuromusculoskeletal system. It could be argued that complex mathematical models are superior to simple mathematical models as they enable basic mechanical insights to be made and individual-specific optimal movement solutions to be identified. Contrary to some claims in the literature, however, we suggest that it is currently not possible to identify the complete optimal solution for a given motor activity. For a complete optimization of human motion, dynamical systems theory implies that mathematical models must incorporate a much wider range of organismic, environmental and task constraints. These ideas encapsulate why sports medicine specialists need to adopt more individualized clinical assessment procedures in interpreting why performers' movement patterns may differ.
Resumo:
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.