1000 resultados para Molecular Motors
Resumo:
Purpose: We tested whether the combination of 4 established cell cycle regulators (p53, pRB, p21 and p27) could improve the ability to predict clinical outcomes in a large multi-institutional collaboration of patients with pT3-4N0 or pTany Npositive urothelial carcinoma of the bladder. We also assessed whether the combination of molecular markers is superior to any individual biomarker. Materials and Methods: The study comprised 692 patients with pT3-4N0 or pTany Npositive urothelial carcinoma of the bladder treated with radical cystectomy and bilateral lymphadenectomy (median followup 5.3 years). Scoring was performed using advanced cell imaging and color detection software. The base model incorporated patient age, gender, stage, grade, lymphovascular invasion, number of lymph nodes removed, number of positive lymph nodes, concomitant carcinoma in situ and adjuvant chemotherapy. Results: Individual molecular markers did not improve the predictive accuracy for disease recurrence and cancer specific mortality. Combination of all 4 molecular markers into number of altered molecular markers resulted in significantly 1 higher predictive accuracy than any single biomarker (p < 0.001.). Moreover addition of number of altered molecular markers to the base model significantly improved the predictive accuracy for disease recurrence (3.9%, p < 0.001) and cancer specific mortality (4.3%, p < 0.001). Addition of number of altered molecular markers retained statistical significance for improving the prediction of clinical outcomes in the subgroup of patients with pT3N0 (280), pT4N0 (83) and pTany Npositive (329) disease (p < 0.001). Conclusions: While the status of individual molecular markers does not add sufficient value to outcome prediction in patients with advanced urothelial carcinoma of the bladder, combinations of molecular markers may improve molecular staging, prognostication and possibly prediction of response to therapy.
Resumo:
Pulp softening is one of the most remarkable changes during ripening of papaya (Carica papaya) fruit and it is a major cause for post-harvest losses. Although cell wall catabolism has a major influence on papaya fruit, quality information on the gene products involved in this process is limited. A full-length polygalacturonase cDNA (cpPG) was isolated from papaya pulp and used to study gene expression and enzyme activity during normal and ethylene-induced ripening and after exposure of the fruit to 1-MCP. Northern-blot analysis demonstrated that cpPG transcription was strongly induced during ripening and was highly ethylene-dependent. The accumulation of cpPG transcript was paralleled by enzyme activity, and inversely correlated to the pulp firmness. Preliminary in silica analysis of the cpPG genomic sequence revealed the occurrence of putative regulatory motifs in the promoter region that may help to explain the effects of plant hormones and non-abiotic stresses on papaya fruit firmness. This newly isolated cpPG is an important candidate for functional characterization and manipulation to control the process of pulp softening during papaya ripening. (C) 2009 Elsevier Masson SAS. All rights reserved.
Linking biophysical and genetic models to integrate physiology, molecular biology and plant breeding
Resumo:
Papaya (Carica papaya) is a climacteric fruit that undergoes dramatic pulp softening. Fruits sampled at three different conditions (natural ripening or after exposition to ethylene or 1-methylcyclopropene) were used for the isolation of cell wall polymers to find changes in their degradation pattern. Polymers were separated according to their solubility in water, CDTA, and 4 M alkali, and their monosaccharide compositions were determined. Water-soluble polymers were further characterized, and their increased yields in control and ethylene-treated fruit, in contrast to those that were treated with 1-MCP, indicated a strong association between fruit softening and changes in the cell wall water-soluble polysaccharide fraction. The results indicate that the extensive softening in the pulp of ripening papayas is a consequence of solubilization of large molecular mass galacturonans from the pectin fraction of the cell wall. This process seems to be dependent on the levels of ethylene, and it is likely that the releasing of galacturonan chains results from an endo acting polygalacturonase.
Resumo:
Type 1, X-linked Hyper-IgM syndrome (HIGM1) is caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). CD40L is expressed in activated T cells and interacts with CD40 receptor expressed on B lymphocytes and dendritic cells. Affected patients present cellular and humoral immune defects, with infections by intracellular, opportunistic and extracellular pathogens. In the present study we investigated the molecular defects underlying disease in four patients with HIGM1. We identified four distinct CD40L mutations, two of them which have not been previously described. P1 harboured the novel p.G227X mutation which abolished CD40L expression. P2 had a previously described frame shift deletion in exon 2 (p.I53fsX65) which also prevented protein expression. P3 demonstrated the previously known p.V126D change in exon 4, affecting the TNF homology (TNFH) domain. Finally, P4 evidenced the novel p.F229L mutation also located in the TNFH domain. In silico analysis of F229L predicted the change to be pathological, affecting the many hydrophobic interactions of this residue. Precise molecular diagnosis in HIGM syndrome allows reliable detection of carriers, making genetic counselling and prenatal diagnosis possible.
Resumo:
Respiratory syncytial virus (RSV) is recognized as the leading cause of nosocomial respiratory infection among hematopoietic stem cell transplant (HSCT) recipients, causing considerable morbidity and mortality. RSV is easily transmitted by contact with contaminated surfaces, and in HSCT units, more than 50% of RSV infections have been characterized as of nosocomial origin. From April 2001 to October 2002, RSV was identified by direct immunofluorescent assay in 42 symptomatic HSCT recipients. Seven RSV strains from 2001 and 12 RSV strains from 2002 were sequenced. RNA extraction, cDNA synthesis, and seminested polymerase chain reaction (PCR) with primers complementary to RSV genes G and F were pet-formed. PCR products were analyzed by nucleotide sequencing of the C-terminal region of gene G for typing (in group A or B). Of the 7 strains analyzed in 2001, only 2 belonged to group B; the other 5 belonged to group A. Of these 7 strains, 3 were identical and were from recipients receiving outpatient care. In 2002, of the 12 strains analyzed, 3 belonged to group A and the other 9 belonged to group B. Of these 9 strains, 7 were genetically identical and were also from recipients receiving outpatient care. Therefore, multiple strains of RSV cocirculated in the hematopoietic stem cell transplant units (ward and outpatient units) between 2001 and 2002. Nosocomial transmission was more likely to occur at the HSCT outpatient unit than in the HSCT ward. Infection control practices should also be implemented in the outpatient setting.
Resumo:
The aim of the present study was to evaluate the clinicopathological, immunohistochemical, and molecular genetic features of gastrointestinal stromal tumors in Brazil and compare them with cases from other countries. Five hundred and thirteen cases were retrospectively analyzed. HE-stained sections and clinical information were reviewed and the immunohistochemical expression of CD117, CD34, smooth-muscle actin, S-100 protein, desmin, CD44v3 adhesion molecule, p53 protein, epidermal growth factor receptor, and Ki-67 antigen was studied using tissue microarrays. Mutation analysis of KIT and platelet-derived growth factor receptor-alpha genes was also performed. There was a slight female predominance (50.3%) and the median age at diagnosis was 59 years. The tumors were mainly located in the stomach (38.4%). Immunohistochemistry showed that CD117 was expressed in 95.7% of cases. Epidermal growth factor receptor expression was observed in 84.4% of tumors. p53 protein expression was found only in 2.6% of cases but all belonged to the high-risk group for aggressive behavior according to the National Institutes of Health consensus approach. No CD44v3 adhesion molecule expression was detected. KIT exon 11 mutations were the most frequent (62.2%). The present data confirm that gastrointestinal stromal tumors in Brazilian patients do not differ from tumors occurring in other countries.
Resumo:
Adipose tissue tumors of the retroperitoneum showing no identifiable cytologic atypia are usually classified as lipoma-like well-differentiated liposarcoma. Whether a subset of these tumors represents true examples of retroperitoneal lipoma remains a controversial subject, because the diagnostic liposarcoma cells may be of difficult identification, even after extensive sampling. Herein, we describe a large retroperitoneal lipoma with classic histopathologic, cytogenetic, molecular cytogenetic, and molecular genetic features. Extensive morphologic inspection showed no evidence of cytologic atypia. Cytogenetic analysis performed on fresh tissue material revealed the classic lipoma chromosome t(3;12)(q27;q14-15). Fluorescence in situ hybridization on multiple sections excluded the presence of MDM2 and CDK4 amplification, but showed HMGA2 balanced rearrangement in most cells. Reverse-transcriptase polymerase chain reaction followed by sequencing analysis confirmed the presence of the HMGA2-LPP fusion gene, a characteristic and the most common fusion product found in lipoma. The patient has been followed for 2.5 years without evidence of recurrence or metastasis. These results indicate that retroperitoneal lipomata do exist, but their diagnosis must rely on stringent histologic, cytogenetic, and molecular genetic analysis.
Resumo:
Presenilins (PS) are integral membrane proteins involved, among other functions, in regulated intramembrane proteolysis. In this study, we report the identification and characterization of a complementary DNA from Schistosoma mansoni exhibiting a significant homology to human and nonvertebrate presinilins. S. mansoni contained a 1,485 bp open reading frame encoding a predicted protein of 494 amino acids. Alignment of predicted amino acid sequence of S. mansoni with PS (SmPS) from other species revealed up to 40% similarity shared among the investigated organisms. In addition, phylogenetic analyses demonstrated SmPS being closely related to its orthologues found in Schistosoma japonicum and Caenorhabditis elegans. Expression analysis of SmPS using quantitative real-time PCR revealed that the transcript is up-regulated in the egg stage. We hypothesize that the high level of SmPS in the S. mansoni embryo correlates to an important role during cellular signaling associated to larval development. To our knowledge, this study represents the first attempt to investigate the existence and abundance of PS from a helminth parasite.
Resumo:
Quartz Crystal Microbalance (QCM) was used to monitor the mass changes on a quartz crystal surface containing immobilized lectins that interacted with carbohydrates. The strategy for lectin immobilization was developed on the basis of a multilayer system composed of Au-cystamine-glutaraldehyde-lectin. Each step of the immobilization procedure was confirmed by FTIR analysis. The system was used to study the interactions of Concanavalin A (ConA) with maltose and Jacalin with Fetuin. The real-time binding of different concentrations of carbohydrate to the immobilized lectin was monitored by means of QCM measurements and the data obtained allowed for the construction of Langmuir isotherm curves. The association constants determined for the specific interactions analyzed here were (6.4 +/- 0.2) X 10(4) M-1 for Jacalin-Fetuin and (4.5 +/- 0.1) x 10(2) M-1 for ConA-maltose. These results indicate that the QCM constitutes a suitable method for the analysis of lectin-carbohydrate interactions, even when assaying low molecular mass ligands such as disaccharides. Published by Elsevier B.V.
Resumo:
Folic acid (FA) supplementation during carcinogenesis is controversial. Considering the impact of liver cancer as a public health problem and mandatory FA fortification in several countries, the role of FA supplementation in hepatocarcinogenesis should be elucidated. We evaluated FA supplementation during early hepatocarcinogenesis. Rats received daily 0.08 mg (FA8 group) or 0.16 mg (FA16 group) of FA/100 g body weight or water (CO group, controls). After a 2-week treatment, animals were subjected to the ""resistant hepatocyte"" model of hepatocarcinogenesis (initiation with diethylnitrosamine, selection/promotion with 2-acetylaminofluorene and partial hepatectomy) and euthanized after 8 weeks of treatment. Compared to the CO group, the FA16 group presented: reduced (p < 0.05) number of persistent and increased (p < 0.05) number of remodeling glutathione S-transferase (GST-P) positive preneoplastic lesions (PNL); reduced (p < 0.05) cell proliferation in persistent GST-P positive PNL; decreased (p < 0.05) hepatic DNA damage; and a tendency (p < 0.10) for decreased c-myc expression in microdissected PNL. Regarding all these parameters, no differences (p > 0.05) were observed between CO and FA8 groups. FA-treated groups presented increased hepatic levels of S-adenosylmethionine but only FA16 group presented increased S-adenosylmethionine/S-adenosylhomocysteine ratio. No differences (p > 0.05) were observed between experimental groups regarding apoptosis in persistent and remodeling GST-P positive PNL, and global DNA methylation pattern in microdissected PNL. Altogether, the FA16 group, but not the FA8 group, presented chemopreventive activity. Reversion of PNL phenotype and inhibition of DNA damage and of c-myc expression represent relevant FA cellular and molecular effects.
Resumo:
Chagas` disease caused by Trypanosoma cruzi is endemic in Latin America. T. cruzi presents heterogeneous populations and comprises two main genetic lineages, named T. cruzi I and T. cruzi II. Diagnosis in the chronic phase is based on conventional serological tests, including indirect immunofluorescence (IIF) and enzyme-linked immunosorbent assay (ELISA), and diagnosis in the acute phase based on parasitological methods, including hemoculture. The objective of this study was to evaluate the diagnostic procedures of Chagas` disease in adult patients in the chronic phase by using a PCR assay and conventional serological tests, including TESA-blot as the gold standard. Samples were obtained from 240 clinical chronic chagasic patients. The sensitivities, compared to that of TESA-blot, were 70% for PCR using the kinetoplast region, 75% for PCR using the nuclear repetitive region, 99% for IIF, and 95% for ELISA. According to the serological tests results, we recommend that researchers assess the reliability and sensitivity of the commercial kit Chagatest ELISA recombinant, version 3.0 (Chagatest Rec v3.0; Wiener Lab, Rosario, Argentina), due to the lack of sensitivity. Based on our analysis, we concluded that PCR cannot be validated as a conventional diagnostic technique for Chagas` disease. These data have been corroborated by low levels of concordance with serology test results. It is recommended that PCR be used only for alternative diagnostic support. Using the nuclear repetitive region of T. cruzi, PCR could also be applicable for monitoring patients receiving etiologic treatment.
Resumo:
Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus ( Sigmodontinae), Dobrava virus ( Murinae), Puumala virus ( Arvicolinae), and Tula virus ( Arvicolinae). Our results reveal that hantaviruses exhibit shortterm substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated.