876 resultados para Modeling Rapport Using Hidden Markov Models
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work provides a numerical and experimental investigation of fatigue crack growth behavior in steel weldments including crack closure effects and their coupled interaction with weld strength mismatch. A central objective of this study is to extend previously developed frameworks for evaluation of crack clo- sure effects on FCGR to steel weldments while, at the same time, gaining additional understanding of commonly adopted criteria for crack closure loads and their influence on fatigue life of structural welds. Very detailed non-linear finite element analyses using 3-D models of compact tension C ( T ) fracture spec- imens with center cracked, square groove welds provide the evolution of crack growth with cyclic stress intensity factor which is required for the estimation of the closure loads. Fatigue crack growth tests con- ducted on plane-sided, shallow-cracked C ( T ) specimens provide the necessary data against which crack closure effects on fatigue crack growth behavior can be assessed. Overall, the present investigation pro- vides additional support for estimation procedures of plasticity-induced crack closure loads in fatigue analyses of structural steels and their weldments
Resumo:
It is an important and difficult challenge to protect modern interconnected power system from blackouts. Applying advanced power system protection techniques and increasing power system stability are ways to improve the reliability and security of power systems. Phasor-domain software packages such as Power System Simulator for Engineers (PSS/E) can be used to study large power systems but cannot be used for transient analysis. In order to observe both power system stability and transient behavior of the system during disturbances, modeling has to be done in the time-domain. This work focuses on modeling of power systems and various control systems in the Alternative Transients Program (ATP). ATP is a time-domain power system modeling software in which all the power system components can be modeled in detail. Models are implemented with attention to component representation and parameters. The synchronous machine model includes the saturation characteristics and control interface. Transient Analysis Control System is used to model the excitation control system, power system stabilizer and the turbine governor system of the synchronous machine. Several base cases of a single machine system are modeled and benchmarked against PSS/E. A two area system is modeled and inter-area and intra-area oscillations are observed. The two area system is reduced to a two machine system using reduced dynamic equivalencing. The original and the reduced systems are benchmarked against PSS/E. This work also includes the simulation of single-pole tripping using one of the base case models. Advantages of single-pole tripping and comparison of system behavior against three-pole tripping are studied. Results indicate that the built-in control system models in PSS/E can be effectively reproduced in ATP. The benchmarked models correctly simulate the power system dynamics. The successful implementation of a dynamically reduced system in ATP shows promise for studying a small sub-system of a large system without losing the dynamic behaviors. Other aspects such as relaying can be investigated using the benchmarked models. It is expected that this work will provide guidance in modeling different control systems for the synchronous machine and in representing dynamic equivalents of large power systems.
Resumo:
The threat of impact or explosive loads is regrettably a scenario to be taken into account in the design of lifeline or critical civilian buildings. These are often made of concrete and not specifically designed for military threats. Numerical simulation of such cases may be undertaken with the aid of state of the art explicit dynamic codes, however several difficult challenges are inherent to such models: the material modeling for the concrete anisotropic failure, consideration of reinforcement bars and important structural details, adequate modeling of pressure waves from explosions in complex geometries, and efficient solution to models of complete buildings which can realistically assess failure modes. In this work we employ LS-Dyna for calculation, with Lagrangian finite elements and explicit time integration. Reinforced concrete may be represented in a fairly accurate fashion with recent models such as CSCM model [1] and segregated rebars constrained within the continuum mesh. However, such models cannot be realistically employed for complete models of large buildings, due to limitations of time and computer resources. The use of structural beam and shell elements for this purpose would be the obvious solution, with much lower computational cost. However, this modeling requires careful calibration in order to reproduce adequately the highly nonlinear response of structural concrete members, including bending with and without compression, cracking or plastic crushing, plastic deformation of reinforcement, erosion of vanished elements etc. The main objective of this work is to provide a strategy for modeling such scenarios based on structural elements, using available material models for structural elements [2] and techniques to include the reinforcement in a realistic way. These models are calibrated against fully three-dimensional models and shown to be accurate enough. At the same time they provide the basis for realistic simulation of impact and explosion on full-scale buildings
Resumo:
Introduction Diffusion weighted Imaging (DWI) techniques are able to measure, in vivo and non-invasively, the diffusivity of water molecules inside the human brain. DWI has been applied on cerebral ischemia, brain maturation, epilepsy, multiple sclerosis, etc. [1]. Nowadays, there is a very high availability of these images. DWI allows the identification of brain tissues, so its accurate segmentation is a common initial step for the referred applications. Materials and Methods We present a validation study on automated segmentation of DWI based on the Gaussian mixture and hidden Markov random field models. This methodology is widely solved with iterative conditional modes algorithm, but some studies suggest [2] that graph-cuts (GC) algorithms improve the results when initialization is not close to the final solution. We implemented a segmentation tool integrating ITK with a GC algorithm [3], and a validation software using fuzzy overlap measures [4]. Results Segmentation accuracy of each tool is tested against a gold-standard segmentation obtained from a T1 MPRAGE magnetic resonance image of the same subject, registered to the DWI space. The proposed software shows meaningful improvements by using the GC energy minimization approach on DTI and DSI (Diffusion Spectrum Imaging) data. Conclusions The brain tissues segmentation on DWI is a fundamental step on many applications. Accuracy and robustness improvements are achieved with the proposed software, with high impact on the application’s final result.
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.
Resumo:
For most of us, speaking in a non-native language involves deviating to some extent from native pronunciation norms. However, the detailed basis for foreign accent (FA) remains elusive, in part due to methodological challenges in isolating segmental from suprasegmental factors. The current study examines the role of segmental features in conveying FA through the use of a generative approach in which accent is localised to single consonantal segments. Three techniques are evaluated: the first requires a highly-proficiency bilingual to produce words with isolated accented segments; the second uses cross-splicing of context-dependent consonants from the non-native language into native words; the third employs hidden Markov model synthesis to blend voice models for both languages. Using English and Spanish as the native/non-native languages respectively, listener cohorts from both languages identified words and rated their degree of FA. All techniques were capable of generating accented words, but to differing degrees. Naturally-produced speech led to the strongest FA ratings and synthetic speech the weakest, which we interpret as the outcome of over-smoothing. Nevertheless, the flexibility offered by synthesising localised accent encourages further development of the method.
Resumo:
Context. Runaway O- and early B-type stars passing through the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high-energy photons by nonthermal radiative processes, but their efficiency is still debated. Aims. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. Methods. We applied our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high-energy emission, and to the transition phase of a supergiant star in the late stages of its life. Results. From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high-energy flux emission from the bow shock produced by BD+43 3654, and the possibility of high-energy emission from the bow shock formed by a supergiant star during the transition phase from blue to red supergiant. Conclusions. Bow shocks formed by different types of runaway stars are revealed as a new possible source of high-energy photons in our neighborhood.
Resumo:
Context. Runaway O- and early B-type stars passing through the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high-energy photons by nonthermal radiative processes, but their efficiency is still debated. Aims. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. Methods. We applied our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high-energy emission, and to the transition phase of a supergiant star in the late stages of its life. Results. From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high-energy flux emission from the bow shock produced by BD+43 3654, and the possibility of high-energy emission from the bow shock formed by a supergiant star during the transition phase from blue to red supergiant. Conclusions. Bow shocks formed by different types of runaway stars are revealed as a new possible source of high-energy photons in our neighborhood.
Resumo:
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. We present an analogue modeling study using cohesive powder with pre-formed joint sets in the upper layer, varying the angle between joints and a rigid basement fault. We analyze interpreted map-view photographs at maximum displacement for damage zone width, number of connected joints, number of secondary fractures, degree of segmentation and area fraction of massively dilatant fractures. Particle imaging velocimetry helps provide insights on deformation history of the experiments and illustrate the localization pattern of fault segments. Results show that with increasing angle between joint-set and basement-fault strike the number of secondary fractures and the number of connected joints increases, while the area fraction of massively dilatant fractures shows only a minor increase. Models without pre-existing joints show far lower area fractions of massively dilatant fractures while forming distinctly more secondary fractures.
Resumo:
Stratum corneum (SC) desorption experiments have yielded higher calculated steady-state fluxes than those obtained by epidermal penetration studies. A possible explanation of this result is a variable diffusion or partition coefficient across the SC. We therefore developed the diffusion model for percutaneous penetration and desorption to study the effects of either a variable diffusion coefficient or variable partition coefficient in the SC over the diffusion path length. Steady-state flux, lag time, and mean desorption time were obtained from Laplace domain solutions. Numerical inversion of the Laplace domain solutions was used for simulations of solute concentration-distance and amount penetrated (desorbed)-time profiles. Diffusion and partition coefficients heterogeneity were examined using six different models. The effect of heterogeneity on predicted flux from desorption studies was compared with that obtained in permeation studies. Partition coefficient heterogeneity had a more profound effect on predicted fluxes than diffusion coefficient heterogeneity. Concentration-distance profiles show even larger dependence on heterogeneity, which is consistent with experimental tape-stripping data reported for clobetasol propionate and other solutes. The clobetasol propionate tape-stripping data were most consistent with the partition coefficient decreasing exponentially for half the SC and then becoming a constant for the remaining SC. (C) 2004 Wiley-Liss, Inc.
Resumo:
In this study, we propose a novel method to predict the solvent accessible surface areas of transmembrane residues. For both transmembrane alpha-helix and beta-barrel residues, the correlation coefficients between the predicted and observed accessible surface areas are around 0.65. On the basis of predicted accessible surface areas, residues exposed to the lipid environment or buried inside a protein can be identified by using certain cutoff thresholds. We have extensively examined our approach based on different definitions of accessible surface areas and a variety of sets of control parameters. Given that experimentally determining the structures of membrane proteins is very difficult and membrane proteins are actually abundant in nature, our approach is useful for theoretically modeling membrane protein tertiary structures, particularly for modeling the assembly of transmembrane domains. This approach can be used to annotate the membrane proteins in proteomes to provide extra structural and functional information.
Resumo:
The deficiencies of stationary models applied to financial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space model (SSSM) and discuss the practical details of training such models with a variational EM algorithm due to [Ghahramani and Hilton,1998]. The performance of the SSSM is evaluated on several financial data sets and it is shown to improve on a number of existing benchmark methods.
Resumo:
In the analysis and prediction of many real-world time series, the assumption of stationarity is not valid. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We introduce a new model which combines a dynamic switching (controlled by a hidden Markov model) and a non-linear dynamical system. We show how to train this hybrid model in a maximum likelihood approach and evaluate its performance on both synthetic and financial data.
Resumo:
In this paper, we discuss how discriminative training can be applied to the hidden vector state (HVS) model in different task domains. The HVS model is a discrete hidden Markov model (HMM) in which each HMM state represents the state of a push-down automaton with a finite stack size. In previous applications, maximum-likelihood estimation (MLE) is used to derive the parameters of the HVS model. However, MLE makes a number of assumptions and unfortunately some of these assumptions do not hold. Discriminative training, without making such assumptions, can improve the performance of the HVS model by discriminating the correct hypothesis from the competing hypotheses. Experiments have been conducted in two domains: the travel domain for the semantic parsing task using the DARPA Communicator data and the Air Travel Information Services (ATIS) data and the bioinformatics domain for the information extraction task using the GENIA corpus. The results demonstrate modest improvements of the performance of the HVS model using discriminative training. In the travel domain, discriminative training of the HVS model gives a relative error reduction rate of 31 percent in F-measure when compared with MLE on the DARPA Communicator data and 9 percent on the ATIS data. In the bioinformatics domain, a relative error reduction rate of 4 percent in F-measure is achieved on the GENIA corpus.