434 resultados para Middle–Late Permian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive Rubidium-Strontium age determinations on both mineral and total rock samples of the crystalline rocks of New Zealand, which almost solely crop out in the South Island, indicate widespread plutonic and metamorphic activity occurred during two periods, one about 100-118 million years ago and the other about 340-370 million years ago. The former results date the Rangitata Orogeny as Cretaceous. They associate extensive plutonic activity with this orogeny which uplifted and metamorphosed the rocks of the New Zealand Geosyncline, although no field association between the metamorphosed geosynclinal rocks and plutonic rocks has been found. The Cretaceous plutonic rocks occur to the west in the Foreland Province in Fiordland, Nelson, and Westland, geographically separated from the Geosynclinal Province. Because of this synchronous timing of plutonic and high pressure metamorphic activity in spatially separated belts, the Rangitata Orogeny in New Zealand is very similar to late Mesozoic orogenic activity in many other areas of the circum-Pacific margin (Miyashiro, 1961).

The 340-370 million year rocks, both plutonic and metamorphic, have been found only in that part of the Foreland Province north of the Alpine Fault. There, they are concentrated along the west coast over a distance of 500 km, and appear scattered inland from the coast. Probably this activity marks the outstanding Phanerozoic stratigraphic gap in New Zealand which occurred after the Lower Devonian.

A few crystalline rocks in the Foreland Province north of the Alpine Fault with measured ages intermediate between 340 and 120 million years have been found. Of these, those with more than one mineral examined give discordant results. All of these rocks are tentatively regarded as 340-370 million year old rocks that have been variously disturbed during the Rangitata Orogeny, 100-120 million years ago.

In addition to these two periods, plutonic activity, dominantly basic and ultrabasic, but including the development of some rocks of intermediate and acidic composition, occurred along the margin of the Geosynclinal Province at its border with the Foreland Province during Permian times about 245 million years ago, and this activity possibly extended into the Mesozoic.

Evidence from rubidium-strontium analyses of minerals and a total rock, and from uranium, thorium, and lead analyses of uniform euhedral zircons from a meta-igneous portion of the Charleston Gneiss, previously mapped as Precambrian, indicate that this rock is a 350-370 million year old plutonic rock metamorphosed 100 million yea rs ago during the Rangitata Orogeny. No crystalline rocks with primary Precambrian ages have been found in New Zealand. However, Pb207/Pb206 ages of 1360 million years and 1370 million years have been determined for rounded detrital zircons separated from each of two hornfels samples of one of New Zealand's olde st sedimentary units, the Greenland Series. These two samples were metamorphosed 345- 370 million years ago. They occur along the west coast, north of the Alpine Fault, at Waitaha River and Moeraki River, separated by 135 km. The Precambrian measured ages are most likely minimum ages for the oldest source area which provided the detrital zircons because the uranium, thorium and lead data are highly discordant. These results are of fundamental importance for the tectonic picture of the Southwest Pacific margin and demonstrate the existence of relatively old continental crust of some lateral extent in the neighborhood of New Zealand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente estudo aborda a caracterização quimioestratigráfica da Formação Irati (Permiano da Bacia doParaná), bem como a avaliçãodo potencial gerador. Foi realizada coleta sistemática de amostras de testemunho do poço SC-20-RS, para as quais foram realizadas análisesdos teores de COT, S e RI,Pirólise Rock-Eval e de Biomarcadores. Com base nesses dados,nove intervalos quimioestratigráficos (designados de A-I a partir da base) foram definidos nos 57,7 metros de espessura.Com base nos dados de biomarcadores obtidos pela cromatografia liquida e gasosa foi possível fazer um estudo mais detalhado da variação ambiental e input da matéria orgânica, e identificar como foi o ambiente deposicionaldo intervalo de maior potencial gerador da Bacia do Paraná. O Membro Assistência, desta formação, caracterizado por ter sido depositado em ambiente restrito, possui o intervalo mais promissor (Intervalo E), que compreende uma seção de cerca de 5 metros de espessura, nota-se que há uma maior preservação da matéria orgânica rica em hidrogênio(Tipo II) e aumento do COT% quando, o ambiente torna-se menos restrito, e a salinidade do ambiente diminui o que também foi identificado através dos biomarcadores. A Formação Irati constitui a fonte de folhelhos betuminosos utilizados pela Petrobrás para a obtenção industrial de óleo, gás, enxofre e subprodutos derivados a partir do processo de industrialização dessas rochas. É também uma das principais geradoras dos indícios de petróleo encontrados na Bacia do Paraná. Assim, a obtenção de dados que possam agregar conhecimentos sobre esta formação será sempre de extrema importância

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文系统回顾了无被果孢属的研究历史,讨论了无被果孢属的鉴定特征及种的划分依据,总结了无被果孢属已有种的特征及分布。在此基础上对山西太原西山煤田太原组7号煤层煤核及河北平泉杨树岭煤矿太原组火山凝灰岩中的无被果孢属进行了详细的解剖学研究,把它们与无被果孢属已有种进行了详细的对比后,共鉴定出二个新种和二个未定种。这二个新种的主要特征如下: 过渡无被果孢(新种)Achlamydocarpon intermedia sp. nov. 大孢子囊大约长6.0-10.0 mm,宽4.6 mm,高1.4mm,背腹扁状,具顶脊,两侧角明显, 近轴端开口。孢子囊壁复杂,分化为三层:最外层为单层柱状细胞层;中层1-2层细胞厚,细胞具深色内含物,壁薄;内层1-3层细胞厚,细胞壁强烈加厚。柱状层朝近轴端方向厚度加大。大孢子叶柄背脊不甚发育,具明显侧翼,侧翼的末端膨大并下垂使得柄的横切面略呈 “M”形。侧翼的宽度由近轴端向远轴端随孢子囊宽度的增加而增加,整体宽度大致保持为孢子囊的宽度的1/2左右。侧翼的近轴面具对称的厚壁组织区域。木质部束在近轴端为近等径状,向远轴端则变为略呈水平伸长状。通气组织发达,独立空腔结构贯穿孢子叶柄的整个长度。败育大孢子似乎具肿块结构。 本新种产于山西太原西山煤田太原组7号煤层煤核中。 2、平泉无被果孢(新种) Achlamydocarpon pingquanensis sp. nov 大孢子囊10.0-15.0 mm长,8.1 mm宽,3.0 mm 高。背腹扁,不具顶脊,两侧角明显,远轴端开口。壁复杂,分化为5层:最外层为薄壁细胞层,厚1-3层细胞;次外层为次生壁强烈增厚的细胞层,厚2-数层细胞;中层为具深色内含物的薄壁细胞层,厚2-数层细胞;次内层为与次外层相似的厚壁细胞层;内层为厚度达数个细胞的薄壁细胞层。孢子叶柄侧翼发育,宽度大于孢子囊宽度。背脊或龙骨很不显著。远轴面有时呈强烈的起伏不平状。大孢子囊底部与孢子囊柄连结部分由厚壁的细胞构成。不育组织垫结构较显著。功能大孢子扁缩,在近轴端发育较好,上表面具一突起结构。败育大孢子瘪缩,结构复杂,具明显肿块结构(?),瘤状肿块结构与败育孢子表面相连部分呈棒状。孢子叶柄近轴面不具有明显的厚壁组织区域;维管束由木质部束、维管束鞘及其所围成的空腔组成,但在远轴端仅剩下木质部束;通气组织发达,在维管束下方形成一独立空腔。 本新种分别产于山西太原西山煤田太原组7号煤层煤核和河北平泉杨树岭煤矿太原组火山凝灰岩中。 过渡无被果孢(新种)的特征介于欧美植物区的变异无被果孢类型和塔赫他间无被果孢类型之间。平泉无被果孢(新种)则与变异无被果孢类型较相近,但二者的大孢子囊壁的最外层完全不同:前者的是柱状细胞层,而后者的则由近等径的类似薄壁组织的细胞构成。二个未定种中,无被果孢(未定种 1)与过渡无被果孢(新种)很相似,区别在于前者的大孢子囊壁缺乏最外层的柱状细胞层以及孢子叶柄具明显的背脊或龙骨。无被果孢(未定种 2)则与塔赫他间无被果孢类型较接近。 根据华夏植物区和欧美植物区的化石材料和文献,探讨了保存不完整的大孢子囊-孢子叶复合体的远轴端和近轴端的判断方法:孢子囊较宽较高、孢子叶柄较为粗大、侧翼较发育、维管束较大、通气腔较发育的一端往往为远轴端,反之则为近轴端。 还讨论了无被果孢属一些构造的演化趋势: 1、孢子囊壁由简单向复杂或高度分化; 2、通气组织由不发达到高度特异化; 3、叶迹从微弱到显著,从简单到复杂; 4、败育大孢子从饱满到瘪缩,从表面平整到高度曲折,结构复杂化 5、大孢子四分体结合紧密度呈下降趋势

Relevância:

10.00% 10.00%

Publicador:

Resumo:

辉木植物是莲座蕨目在晚古生代最重要的成员,广泛分布于当时处于热带-亚热带气候条件下的晚石炭世-二叠纪欧美植物区和华夏植物区。目前欧美植物区晚石炭世的辉木植物已经研究得非常深入和全面,但相对来说二叠纪的辉木植物的研究,尤其是关于其非茎器官的研究要薄弱得多。中国山西太原西山煤田早二叠世早期太原组7号煤层煤核中产有丰富的辉木植物各种器官化石,这就为深入了解二叠纪辉木植物的形态、解剖以及辉木植物的系统发育与演化提供了重要的化石材料。本论文利用国际上研究煤核时广泛采用的揭膜法,深入研究了山西煤核中2种分散保存的辉木植物器官:羽轴-山西枝蕨(新种)和生殖羽片-山西始莲座蕨(新种)。由于目前尚无有关二叠纪具解剖构造的辉木植物羽轴的详细研究的报道,因此,山西枝蕨(新种)是国内外目前为止第一种研究得最详细的二叠纪具解剖构造的辉木植物羽轴,它与欧美植物区枝蕨属已有的几个种(均为晚石炭世)的主要区别在于:前者为背腹扁状,后者则为两侧扁状;前者具较发育的鳞片,后者一般没有;前者的表皮下方有一条含有较大的单宁质细胞的薄壁组织带,后者没有;前者的内维管束呈“C”形,较大,位于正中央,后者的内维管束一般呈“W”形,较小,位于一侧。山西始莲座蕨(新种)是目前为止国内第一种(世界第二种)详细研究的二叠纪具解剖构造的两侧对称形的辉木植物聚合囊,同时也是目前国内发现的时代最早的华夏植物区两侧对称形的莲座蕨目聚合囊(包括印痕-压型化石和具解剖构造的矿化化石),它与欧美植物区始莲座蕨属已有的2个种(均为晚石炭世)的主要区别在于:前者的聚合囊囊托维管化,后者的囊托中无维管组织存在;前者的孢子囊侧壁细胞在近顶端呈明显的径向伸长状,后者的孢子囊侧壁细胞的形状和大小在孢子囊的上下没有很明显的变化;前者的孢子很小,数量多,纹饰简单,后者的孢子大,数量少,纹饰复杂。总的来说,本文所研究的二个新种与欧美植物区同属其它种之间的区别要大于后者彼此之间的区别,这可能是由于处于不同的植物地理区,经过长期地理隔绝和平行演化的结果。本研究成果不仅丰富了我们对二叠纪辉木植物非茎器官解剖构造的认识,而且对今后开展华夏植物区二叠纪辉木植物的分类、系统发育和演化以及整体植物的研究,都具有重要的作用和意义。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文应用揭膜方法(Peeling Method)对产于我国西南地区滇东黔西一带晚二叠世地层中的保存有解剖构造的莲座蕨目化石进行了较为深入的研究,包括3 种茎和一种生殖器官。3 种茎中有二种为本文首次研究,均归入辉木属Psaronius Cotta,建立了二个新种:盘县辉木P. panxianensis 和老屋基辉木P. laowujiensis;另外一个种-田氏辉木P. tianii Li(MS)为前人所建立,但未正式发表,本文做了重新研究,新发现了一些特征,并对一些已有特征做了修订。讨论了这3 个种一些重要特征的分类和系统演化意义,这些特征包括:叶迹最后分出时的维管构型、维管束鞘和边缘茎维管束内侧的厚壁组织束。通过对不同地区和不同时代辉木属已有种的特征分析,对辉木属属下分类做了尝试,根据维管束是否结成环状、叶迹维管构型、是否具维管束鞘、边缘茎维管束内侧的厚壁组织束的发育与否、边缘茎维管束是否分叉等特征将辉木属已有种(包括本文所研究的3 个种)分为5 个组:1. Blicklei 组,代表种为Psaronius blicklei Morgan,包括欧美植物区目前已知各种,可能还包括华夏植物区的一些种。它们的主要特征是:不具维管束鞘;边缘茎维管束内侧的厚壁组织束不发育。2.Panxianensis 组,代表种为盘县辉木Psaronius panxianensis He,Wang,Hilton,Tian et Zhou,包括王氏辉木、老屋基辉木、江苏辉木,可能还有八角辉木和六角辉木。最主要特征是:具维管束鞘,简单,仅由薄壁细胞构成;边缘茎维管束内侧具树枝状和伞状或锚状厚壁组织束;叶迹由3 根维管束构成。该组目前仅发现于华南地区二叠系。3. Tianii 组,以田氏辉木Psaronius tianii Li(MS)为代表,目前只有这一个种。该组的主要特征:具维管束鞘,复杂,可分为两层;边缘茎维管束内侧具菊花状厚壁组织束,且每两环维管束之间具两条厚壁组织束,其中一条连续,另一条不连续;叶迹呈歪斜的弓形或M 形;叶迹维管束与茎维管束等粗;边缘茎维管束可分叉。该组目前仅发现于华南地区二叠系。4. Brasiliensis 组,以巴西辉木Psaronius brasiliensis Brongniart 为代表,除巴西辉木外,可能还包括P. sp. Herbst。该组的最主要特征就是其维管束的一端内卷并与主体部分连接形成一个封闭的环状构造;茎中央的维管束小,形态多变,而且排列十分不规则。该组目前仅发现于南美地区二叠系。5. Sinuosus 组,以P. sinuosus Herbst 为代表,目前也只有此一个种。其最主要的特征就是叶迹具多个维管束,且排列无规则;茎维管束非常长,呈盘绕状。该组目前仅发现于南美地区二叠系。生殖器官归入虫囊蕨属Scolecopteris(Zenker)Millay,建立一新种:贵州虫囊蕨。该种仅保存有聚合囊和分散的孢子囊,生殖小羽片不明。孢子囊面向外的壁较厚,但分化,自内向外可分为三部分;孢子具三缝,较大,直径55-60μm。由于该种同时拥有Millay 认为的原始特征(大的孢子)和进化特征(即分化的孢子囊面向外的壁)。很可能Millay 的观点仅仅反映了欧美植物区虫囊蕨属的演化规律。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文基于华南、华北地区二叠纪—三叠纪陆生植物大化石和孢粉的数据库, 对中国二叠纪—三叠纪陆生植物的多样性变化进行了统计分析研究,并重点探讨了在二叠纪—三叠纪界线(Permian-Triassic Boundary,PTB )陆生植物是否与同期的海洋动物一样发生了同步的集群灭绝事件。 统计分析表明,华南、华北陆生植物大化石的分异度穿过PTB 均显示了较长时续(约37.8Ma)的下降和残存阶段,而孢粉化石在早三叠世的分异度则是上升的。总体上,陆生植物分异度穿过PTB 的变化较同期的海洋动物平稳缓慢。华南地区陆生植物大化石在晚二叠世末长兴期(Changhsingian)虽然伴随着最高的属灭绝率85.94% 和最低的属新生率28.12%,发生了最大的灭绝事件,但在晚二叠世早期和早三叠世的属的灭绝率也较高,分别为61.02% 和66.67% 。种的灭绝率在晚二叠世早期从早二叠世晚期的39%大幅度上升到80.36%,晚二叠世晚期达峰值97%,早三叠世稍降为93%,显然高于其它时段灭绝率范围(30—70%)。种和属的灭绝率呈现了同样的高峰阶段,从晚二叠世早期至早三叠世,时续为20.8 百万年(Ma)。基于更替率分析,华南地区陆生植物的高更替率事件分别发生在早二叠世晚期(93.75%)、早三叠世(90.92%)和晚三叠世(91.38%),但陆生植物在穿越早二叠世晚期—晚三叠世的整个过程中,更替率波动不大、比较平稳。华北地区陆生植物大化石穿越PTB 的灭绝率比华南地区低,属级高灭绝率事件集中在晚二叠世早期(67.31%)和晚二叠世晚期(63.89%), 时续为14.8Ma,种级高灭绝率事件与华南地区类似,集中在晚二叠世早期(85.67%)、晚二叠世晚期(90.86%)和早三叠世(80.28% )三个阶段,时续为20.8Ma 。显而易见,这比同期海洋动物集群灭绝的时续(3—11Ma )要长。 本文基于这些分析结果,仔细考虑了集群灭绝的4 个特点(即量值、广度、幅度和时续),认为华南、华北陆生植物在PTB 并未发生集群灭绝事件,而是发生了演化替代,即陆生植物穿过PTB 经历了大的植物群重组和新种的演化。总体上,中国二叠纪—三叠纪陆生植物中选择性灭绝非常明显,古生代占优势的种子蕨、真蕨类、木本石松类和楔叶类逐渐被早中生代比较进化的裸子植物和真蕨类植物所替代,陆生植物穿过PTB 显示了危机(灭绝)—残存—复苏—辐射的宏演化式样。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The largest mass extinction in the Phanerozoic happened at the end of the Permian. The microbialites formed in the extreme environments after the mass extinction has become a hotspot for geologists and paleontologists throughout the world. The dendroid microbialites that were described for the first time in 1999 from the Permian-Triassic boundary section at Laolongdong, Chongqing, have been studied by many geologists from China and overseas. Two important viewpoints about their origin have been proposed. Some researchers believed that they resemble Quaternary travertine shrubs in form, and may belong to microbialites. Some other researchers proposed that the dendroid structure is composed of clots formed by coccoidal cynaobacteria, and is microbialite. Our detailed survey on the section reveals that: (1) there is an interval of speckled “microbialite” in the section, and it underlies the dendroid “microbialite”, (2) the dendroid “microbialite” does not always have dendroid appearance; they are dendroid only in very local places; they are not dendroid in most places; for this reason, they are not comparable to recent tufa; (3) the volume of the dendroid structure greatly increases toward the top of the dendroid microbialite interval: accounting to 70% of the whole rock in the top part. This distribution pattern implies that the formation of this structure may be related to downward migration of the diagenetic fluid. Examination of thin sections reveals that the dendroid structure or point-like structure in the “microbialite” look as lighter areas in the thin sections and are composed of large blocky clear calcites containing scattered yellow dirty small calcite rhombi and irregular “points” of relict lime mudstone or wackestone or packstone. Their formation is by any one of the following two processes: (1) dissolution → filling of large blocky calcite; (2) dolomitization → dedolomitization → dissolution by meteoric fresh water → filling by large blocky calcites. It has been found that there are at least two sea-level falls during the P-T transition. As the sea level fall, the carbonate deposits came into supratidal environment, and suffered dolomitization caused by evaporative fluid or mixing water of sea water and meteoric water. Since the fluid migrated downward from the top of the deposits and in random pathway, the dolomitization formed dendroid or speckled dolomitic areas. As the deposits came into subaerial environments, the meteoric fresh water migrated along the dendroid or speckled dolomitic area with higher porosity, and dissolution happened, which caused the rock became spongy or alveolate. In later time, after the strata came into phreatic zone, large clear blocky calcites grew in and filled the pores in the spongy areas. The dendroid and speckled structure were formed in this way, rather than composed of clots formed by coccoid cyanobecteria. The microbial fossils in Laolongdong section include two types. The first is the tube-like cyanobecteria in middle Bed 3, which are generally less than 1 mm in length, taper toward one end, and are internally filled by microspars. They are straight or sinuous, with micritic wall 0.005~0.01 mm thick. Since this kind of microbial fossils are abundant in middle Bed 3, this rock belongs to microbialite. The second type occurs in Bed 5 and lower and middle Bed 6. They are irregular globular in shape, generally 0.2 ~ 0.5 mm in size, with several outward progresses, and internally filled by one layer of needle-like calcite cements on the wall and the large blocky calcite in the inner space. According to their shape and preservation way, it is inferred that this kind of fossils were formed from some kind of bacterial colony. The bacterial colony may be cuticle in composition, since it has some hardness as it is indicated by its resistance to deposit loading. These organisms discomposed during diagenetic time, and formed good porosity. In later diagenetic time, these pores were firstly cemented by needle-like calcites and later filled by large blocky calcites. So, the bacterial colony promoted the formation of dendroid and speckled structures. However, they did not always form such structures. On the other hand, even though no bacterial colony or other microbes or any kind of fossils were present, dendroid or speckled structures can form. Bed 4 of Laolongdong section contains abundant gastropods but no microbial fossils, and is not microbialite, even though it is speckled. The top of Bed 6 is dendroid, but contain no microbial fossils, and is not micrbialite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on geophysical and geological data in Jiyang depression, the paper has identified main unconformity surfaces (main movement surfaces) and tectonic sequences and established tectonic and strata framework for correlation between different sags. Based on different sorts of structural styles and characteristics of typical structures, the paper summarized characteristics and distribution of deep structures, discussed evolution sequence of structure, analyzed the relation between tectonic evolution and generation of petroleum. The major developments are as following: Six tectonic sequences could be divided from bottom to top in the deep zone of Jiyang depression. These tectonic sequences are Cambrian to Ordovician, Carboniferous to Permian, lower to middle Jurassic, upper Jurassic to lower Cretaceous, upper Cretaceous and Kongdian formation to the fourth member of Shahejie formation. The center of sedimentation and subsidence of tectonic sequences distinguished from each other in seismic profiles is controlled by tectonic movements. Six tectonic evolution stages could be summarized in the deep zone in Jiyang depression. Among these stages, Paleozoic stage is croton sedimentation basin; Indosinian stage, open folds of EW direction are controlled by compression of nearly SN direction in early Indosinian (early to middle Triassic) while fold thrust fault of EW – NWW direction and arch protruding to NNE direction are controlled by strong compression in late Indosinian (latter Triassic); early Yanshanian stage (early to middle Jurassic), in relatively weak movement after Indosinian compressional orogeny, fluviolacustrine is deposited in intermontane basins in the beginning of early Yanshanian and then extensively denudated in the main orogenic phase; middle Yanshanian (late Jurassic to early Cretaceous), strike-slipping basins are wide distribution with extension (negative reversion) of NW – SE direction; latter Yanshanian (late Cretaceous), fold and thrust of NE – NNE direction and positive reversion structure of late Jurassic to early Cretaceous strike-slipping basin are formed by strong compression of NW–SE direction; sedimentation stage of Kongdian formation to the fourth member of Shahejie formation of Cenozoic, half graben basins are formed by extension of SN direction early while uplift is resulted from compression of nearly EW direction latterly. Compression system, extension system and strike-slip system are formed in deep zone of Jiyang depression. According to identifying flower structure of seismic profiles and analysis of leveling layer slice of 3D seismic data and tectonic map of deep tectonic interface, strike-slip structures of deep zone in Jiyang depression are distinguished. In the middle of the Jiyang depression, strike-slip structures extend as SN direction, NNW direction in Huimin sag, but NNE in Zhandong area. Based on map of relict strata thickness, main faults activity and regional tectonic setting, dynamic mechanisms of deep structure are preliminary determination. The main reason is the difference of direction and character of the plate’s movement. Development and rework of multi-stage tectonic effects are benefit for favorable reservoir and structural trap. Based on tectonic development, accumulation conditions of deep sub-sags and exploration achievements in recent years, potential zones of oil-gas reservoir are put forward, such as Dongying sag and Bonan sag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tazhong-Bachu region is located in the Western Tarim basin.The early Permian magmatic rocks occur in the earth surface of Tazhong-Bachu region are mainly distributed in Kepintag,Mazhartag and Wajilitag region. There are a lot of wells, in which researchers found the early Permian magmatic rocks,in desert cover area.Most magmatic rocks are basic rocks, a few of which are ultrabasic rocks and intermediate-acid magmatic rocks.The ultrabasic rocks are are mainly occur in the Cryptoexplosive Breccia Pipes ,which is located in the volcanic complex body of Wajilitag region.The basic rocks can be divided into three rock types:The first type of the magmatic rocks in Tazhong-Bachu region is volcanic rock ,which occurs in the Lower Permian Kupukuziman Formation and Kaipaizileike Formation. Most Volcanic rocks are basalts,a few of which are volcanic breccias and pyroclastic rocks.The basalts are distributed in stratiform occurrences and interbeded the clastic rocks in Kepintag region.The attitudes of the basalts are nearly horizontal.Columnar Joints, gas pore textures and amygdaloidal structure are to develop in basalts.The second type of the magmatic rocks in Tazhong-Bachu region is diabase,which occurs in Mazhartag region.Diabase dike swarms occur in the stratums of Silurian, Devonian, Carboniferous and Lower Permian.They make from NNW direction to SSE direction, the obliquity of stratum is greater than 60°, and the dike thickness is form several cm to several meters. Diabasic texture is found in the rocks .The first type of the magmatic rocks in Tazhong-Bachu region are gabbro- pyroxenite rocks ,which occur in the Wajilitag igneous complex body. The intermediate-acid magmatic rocks, which are mainly syenites, are located in Mazhartag and Wajiltag region. But they are small in the whole Tazhong-Bachu region.There are intermediate-acid magmatic rocks,which are mainly dacite,in the northeast part of the wells in Tazhong-Bachu region.But ,it is not found in earth surface.Through systematical geochemical research of early Permian magmatic rocks,which are distributed in Kepintag,Mazhartag, Wajilitag region and the wells such as F1 well、Z1 well、Z13 well、TZ18 well、H3 well、H4 well et al., the focus on the geochronologic characteristics, the main element,trace element and REE geochemistry, the mineralogic characteristics, the Sr-Nd and Pb isotopic characteristics are put forward. The main points are: 1、A combined study of CL imaging and LA-ICP-MS U-Pb dating were carried out for zircon grains of the magmatic rocks in the Tazhong-Bachu region from the Tarim basin.The results of the systematic zircon LA-ICP-MS U-Pb dating reveal 272±6Ma to 291±10Ma for the magamatic rocks. It indicated that Early Permian is an important period of magmatic acvivity in the Tazhong-Bachu region. 2、There are a big hunch in the curves of primitive mantle-normalized trace element concentrations in the early Permian magmatic rocks from Kepintag, Mazhartag, Wajilitag region and the 14 wells. Light rare earth elements are comparatively rich and heavy rare earth elements are comparatively poor. The slope rates are same between light rare erath elements and heavy rare earth elements. It is not like the curves of the basalts in the convergent margin of plate , in which the slope rates of light rare erath elements is bigger than the alope rates of heavy rare erath elements, and the curves of heavy rare earth elements are comparatively flat. The magmatic rocks of Tazhong-Bachu region rarely have the characteristics of the basalts in the convergent margin of plate, which is that Tantalum, Niobium and Titanium are much poor, and Zirconium, Hafnium and Phosphorus are moderately poor. The magamatic rocks are mostly alkaline, which is indicated by the dots of the (Na2O+K2O)-SiO2 identification diagram. All of these indicate that the early Permian magmatic rocks were formed in an extension environment of intraplate. 3、The Thorium abundance is high and Tantalum abundance is low in most magmatic rocks from Tazhong-Bachu reguion, which is formed for crustal contamination.In the Th/Yb-Ta/Yb identification diagram,most dots are in the region, which means active continental margin, but a few dots are in the region, which means mantle source. It indicated the feeding of continental crust materials. 4、The magnesium content of the olvines from Wagilitag region is richest, and the olvines from Kepintag region is poorest in the tree region. 5、Through the the Sr-Nd and Pb isotopic study of the basalts and diabases from the F1 well core, Z1 well core, Z13 well core,TZ18 well core, and the basalts,gabbros, diabases(diabase-prophyrites) and pl-peridotites from Kepintag,Mazhartag, Wajilitag region , it indicated that all isotopic data is similar and close to enriched mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disequilibrium between supply and demand the east part of North China accelerated natural gas exploration in Bohai bay basin. Exploration practice showed that coal-derived gas is important resource. In searching of big to middle scaled coal derived gas field, and realize successive gas supply, the paper carried out integrated study on structural evolution of Pre-Tertiary and evaluation of reservoir forming condition of coal-derived gas. Study work of the paper was based on the following condition: available achievement in this field at present, good understanding of multiphase of tectonic movement. Study work was focused on geological evolution, source rock evaluation and dissection key factors controlling reservoir forming. Based on analysis of seismic data, drilling data, tectonic style of Pre-Tertiary was subdivided, with different tectonic style representing different tectonic process. By means of state of the art, such as analysis of balanced cross section, and erosion restoration, the paper reestablished tectonic history and analyzed basin property during different tectonic phase. Dynamic mechanism for tectonic movement and influence of tectonic evolution on tectonic style were discussed. Study made it clear that tectonic movement is intensive since Mesozoic including 2 phase of compressional movement (at the end of Indo-China movement, and Yanshan movement), 2 phase of extensional movement (middle Yanshan movement, and Himalayan movement), 2 phase of strike slip movement, as well as 2 phase of reversal movement (early Yanshan movement, and early Himalayan movement). As a result, three tectonic provinces with different remnant of strata and different tectonic style took shape. Based on afore mentioned study, the paper pointed out that evolution of Bohai bay basin experienced the following steps: basin of rift valley type (Pt2+3)-craton basin at passive continental margin (∈1-2)-craton basin at active continental margin (∈3- O)-convergent craton basin (C-T1+2)-intracontinental basin (J+K). Superposition of basins in different stage was discussed. Aimed at tectonic feature of multiple phases, the paper put forward concept model of superposition of tectonic unit, and analyzed its significance on reservoir forming. On basis of the difference among 3 tectonic movements in Mesozoic and Cenozoic, superposition of tectonic unit was classified into the following 3 categories and 6 types: continuous subsidence type (I), subsidence in Mesozoic and uplift for erosion in Cenozoic (II1), repeated subsidence and uplift in Mesozoic and subsidence in Cenozoic (II2), repeated subsidence and uplift in Mesozoic and uplift for erosion in Cenozoic (II3), uplift for erosion in Mesozoic and subsidence in Cenozoic (II4), and continuous uplift (III). Take the organic facies analysis as link, the paper established relationship between sedimentary environment and organic facies, as well as organic facies and organic matter abundance. Combined information of sedimentary environment and logging data, the paper estimated distribution of organic matter abundance. Combined with simulation of secondary hydrocarbon generation, dynamic mechanism of hydrocarbon generation, and thermal history, the paper made static and dynamic evaluation of effective source rock, i.e. Taiyuan formation and Shanxi formation. It is also pointed out that superposition of tectonic unit of type II2, type II4, and type I were the most favorable hydrocarbon generation units. Based on dissection of typical primary coal-derived gas reservoir, including reservoir forming condition and reservoir forming process, the paper pointed out key factors controlling reservoir forming for Carboniferous and Permian System: a. remnant thickness and source rock property were precondition; b. secondary hydrocarbon generation during Himalayan period was key factor; c. tectonic evolution history controlling thermal evolution of source rock was main factor that determine reservoir forming; d. inherited positive structural unit was favorable accumulation direction; e. fault activity and regional caprock determined hydrocarbon accumulation horizon. In the end, the paper established reservoir forming model for different superposition of tectonic units, and pointed out promising exploration belts with 11 of the first class, 5 of the second class and 6 of the third class.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been long known that intense multiple Mesozoic-Cenozoic intracontinental deformations have controlled the grand scale basin-range structural evolution of the Tianshan and its adjacent basins. So it is important to study the sedimentary records of the piedmont basins along the two sides of the Tianshan synthetically for the continental geodynamic research.We carried out a magnetostratigraphy study on Cretaceous- Tertiary succession and U-Pb dating analysis of detrital zircons from the representative sandstone samples of the Mesozoic-Cenozoic deposits in Kuqa Subbasin, northern Tarim Basin, combining our previous results of multiple depositional records from different profiles including paleocurrent data, conglomerate clast, sandstone framswork grains, detrital heavy minerals and geochemistry analysis, so the multiple intracontinental tectonic processes of Tianshan and their depositional response in the Kuqa Subbasin can be revealed. The results show that the tectonic evolution of the Tianshan Orogen and the sedimentary processes of the Kuqa Subbasin can be divided into four periods: early Triassic(active period), from middle Triassic to late Jurassic(placid period), from early Cretaceous to Tertiary Paleocene(active period) and from Neogene to present (intensely active period). Simultaneously,the depositional records reveal the provenance types and tectonic attributes in different periods. As follows, the lower Triassic with a dominant age ranging from 250 to 290Ma of the Zircons, which were principally derived from alkali feldspar granites and alkaline intrusion obviously, relative to the magma activity in Permian. In middle Triassic-late Jurassic, the two samples collected from the Taliqike formation and the Qiakemake formation respectively show the age peak at 350~450Ma, which was relative to the subduction of the Tarim Block to Yili-Central Tianshan Plate. In this period the provenance of the Kuqa deposits was the Central Tianshan arc orogenic belts distantly with little height predominance.During early Cretaceous-Paleogene, two major zircons age spectra at 240~330Ma and 370~480Ma have been acquired, with some other not dominant age ranges, indicating complicated provenance types. In Neogene, the detrital zircons age dating ranges from 460 to 390 Ma primarily. What’s more, the newer chronology of the stratigraphy and the older source age, indicating that Tianshan was uplifted and exhumated further strongly. Further study on the heavy mineral and the detrital zircons age dating of the Mesozoic-Paleogene representative profiles in southern Junggar Basin, combined with the published results of the sandstone framework grains, we consider that it occurred obvious sedimentary and tectonic changes occurred in the inside of Jurassic, from late Jurassic to early Cretaceous and form early Cretaceous to late Cretaceous. On this faces, there are remarkable changes of the steady minerals and unstable minerals, the sandstone maturity and the age spectra of the detrital zircons. Compared the sedimentary records from the two sides of the Tianshan, We find that they are different obviously since Middle Jurassic. It can be concluded that Tianshan have uplifted highly enough to influence the paleo-climatic. According to the current strata division, the structural activity apparently showed a migration from north to south. That is to say, the South Tianshan uplift later than the north, especially from late Jurassic to early Cretaceous , but it was uplifted and exhumated more strongly. Furthermore, correlating the depositional records and tectonic styles in the Kuqa-South Tianshan basin-range conjugation site in the east with the west, the obvious differentiation between the west and the east from the Cretaceous especially in Tertiary along the Tianshan-Kuqa belt was revealed, probably showing earlier uplifting in the east while greater exhumation depth and sediment rates in the west. In addition, the contacting style of Kuqa subbasin to the Tianshan Orogenic belts and the basement structure are also inconsistent at different basin-range conjugation sites. It is probably controlled by a series of N-S strike adjusting belts within the Kuqa subbasin, or probably correlated with the material difference at the complicated basin-range boundary. The research on the Mesozoic-Cenozoic tectonic-depositional response in the piedmont basins along the two sides of the Tianshan shows that the basin-filling process was controlled by the intracontinental multicyclic basin-range interactions, especially affected by the intense tectonic differentiations of basin-range system, which can’t be illuminated using a single evolutionary model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Central Asian Orogen Belt (CAOB), which is different from the subductional orogen and the collisional orogen, is known as the most important site of crustal growth in the Phanerozoic, and it has been a ‘hot spot’ for studying the orogenic belts. The Chinese West Tianshan Orogen is occupying the west-southern part of the CAOB and is of great importances to understand the orogenic processes and the continental growth in the Central Asia. The West Tianshan Orogen had undergone complex tectonic evolutional processes in Paleozoic times and large volumes granitic rocks have recorded important information about these processes. Litter is known about Phanerozoic continental growth in the Western Tianshan area so far, compared with the other areas of the CAOB, such as eastern Junggar, western Junggar, Altai and Alakol. The aim of this dissertation is to set up the chronology frame of granitoids in western Tianshan, provide new evidence for the tectonic evolution and discuss the Paleozoic continental growth in this area, on the basis of the studies on the isotopic chronology, major element, trace element and Nd-Sr isotopic geochemistry of granitoids and the isotopic chronology and geochemistry of the ophiolites in this area, especially the Kule Lake ophiolites. 25 precise SHRIMP U-Pb zircon and LA-ICPMS U-Pb zircon ages have been obtained in this dissertation. The granitic rocks in western Tianshan had been formed during two periods: the granitic gneiss with an age of 896Ma, possibly representing the forming age of the Precambrian basement; the granitic rocks with ages varying from 479Ma to 247Ma, recording the Paleozoic orogenic process of western Tianshan. The granitoids in western Tianshan are composed of intermediate-basic rocks, intermediate rocks, intermediate-acid rocks and acid rocks, mainly intermediate-acid rocks and acid rocks. They are mostly granite, granodiorite, quartz syenite and monzodiorite. Different types of granitic rocks are exposed in different tectonic units. The granitoids on the northern margin of the Yili Plate mainly formed in late Paleozoic (413Ma ~ 281Ma), those with ages varying from 413Ma to 297Ma show continental arc affinities and the magnesian calc-alkalic metaluminous diorite of 281Ma display the geochemical characteristics similar to those of granites formed during the post-orogenic period. The granitiods on the southern margin of the Yili Plate include the adakite diorite of 470Ma which was formd by partial melting of thickened lower crust, the post-collisional alkali-feldspar granite of 430Ma, the volcanic arc granite of 348Ma and the Triassic post-collisional granite. The granitoids in the Central Tianshan Plate formed in 479Ma ~ 247Ma, mainly in 433Ma ~ 321Ma. The granitic rocks with ages of 479Ma ~ 321Ma are magnesian calc-alkalic to alkalic rocks with continental arc affinities. A few post-collisional granitoids of 276Ma ~ 247Ma may have inherited the geochemical characteristics of pre-existing arc magma. The granitic rocks in Southern Tianshan (northern margin of the Tarim plate) formed two stages, 420Ma ~ 411Ma and ca. 285Ma. The magnesian calcic to alkalic granites of 420Ma ~ 411Ma may formed during the extension process of the continental margin. The granite of 285Ma includes mostly ferroan calc-alkalic to alkali-calcic rocks with high SiO2 and high alkaline contents, and obviously negative anomaly of Eu, Ba, Sr, P, Ti, similar to the geochemical characteristics of the A-type granite which is formed during post-collisional extension. The Kule Lake ophiolite in southern Tianshan shows the affinity of N-MORB. A SHRIMP zircon U-Pb age of 425±8Ma has obtained for gabbros. Some zircons have given another group of 206Pb/238U age 918Ma, which may indicate the information of the pre-exist old basement rock. The small oceanic basin represented by Kule Lake ophiolite probably developed on the split northern margin of Tarim block. A model for Paleozoic tectonic evolution of the West Tianshan Orogen has been proposed here on the basis of the new results obtained in this dissertation and the previous published data. In Early Cambrian, the Terskey Ocean occurred along the North Nalati fault (NNF), and it separated the Yili plate from the Central Tianshan plate which was probably connected with the Tarim plate. The Terskey Ocean probably subducted towards south under the Central Tianshan plate and towards north under the Yili plate simultaneously. In the early stage of Late Ordovician, the Terskey Ocean had been closed, and the Yili and Central Tianshan plates collided. Meanwhile, extension happened within the joint Central Tianshan and Tarim plates gradually and the Paleo-South Tianshan Ocean had been formed. In Early Silurian, the Paleo-South Tianshan Ocean began to subduct beneath the composite Yili-Central Tianshan plate, which was intruded by volcanic arc granitoids. In Middle Silurian, the Paleo-South Tianshan Ocean, which had reached a certain width, was subducting strongly. And this subduction may have produced voluminous granitoids in the Central Tianshan plate. In the latest stage of Carboniferous, the Paleo-South Tianshan ocean closed, and the Yili-Central Tianshan plate and Tarim plate collided. In Late Cambrian, Paleo-Junggar Ocean occurred to north of the Yili plate; and started to subduct towards south under the Yili plate in Ordovician. This subduction may have produced a magma arc on the northern margin of the Yili plate. In Late Carboniferous, the Paleo-Junggar Ocean had been closed. The Yili-Central and Junggar plates amalgamated together. The West Tianhan Orogen may undergo a post-collisional collapse since Permian. And the magmatic activities may continue to early Triassic. The initial 87Sr/86Sr ration of the granitic rocks in the western Tianshan Mountains varies from 0.703226 to 0.716343, and Nd(t)from -6.50 to 2.03. The characteristics of Sr-Nd isotope indicate that the source of granitic material is not a sole source, which may be produced by mantle-crust magma mixing. In Paleozoic time, lateral growth of the continental crust along active continental margins was dominant, whereas the vertical growth of continental crust resulted from post- collisional mantle derived magmas was not obvious.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, detailed studies on the sedimentology and petrophysical properties of reservoir rocks in the Shan#2 Member of Shanxi Formation, Zizhou gas field of Ordos Basin, are carried out, based on outcrop description, core description, wireline log interpretation and analysis of petrophysical properties. In the context of stratigraphic division scheme of the Upper Paleozoic in Ordos Basin, the Shan#2 Member is further divided into three subintervals: the Shan#23, Shan#22 and Shan#21, based on the marker beds,depositional cycles, wireline log patterns. Subaqueous deltaic-front distributary channels, distributed from the south to north, is identified,which is the main reservoir sand bodies for gases of Shan#2 Member at Zizhou gas field. Quartzose and lithic-quartzose sandstones, commonly with a high volume of cement, but a low volume of matrix, are the major reservoir rocks in the studied area. All sandstones have been evolved into the late diagenetic stage (referred to as diagenetic stage B) during the burial, experiencing compaction, cementation, replacement and dissolution, in which the compaction and cementation could have reduced the porosity, while dissolution could have improved the petrophysical properties. The pore types in the reservoirs are dominated by intergranular-solutional, intergranular-intercrystal and intercrystal-solutional porosity. According to the parameters and capillary pressure curves of test samples, five types of pore texture (I-V) are differentiated, in which types II and III pore textures displayed by low threshold pressure-wide pore throat and moderate threshold pressure-moderately wide pore throat, exist widespread. Sandstone reservoirs in the studied area are characterized by exceptionally low porosity and permeability, in which the petrophysical properties of those in Shan#23 horizon are relatively better. The petrophysical property of reservoirs was influenced both by the sedimentation and diagenesis. In general, the coarse quartzose sandstones deposited in subaqueous distributary channels show the best petrophysical property, which tends to be worse as the grain size decreases and lithic amount increases. Three types of gas reservoirs in Shan#23 horizon are classified according to petrophysical properties (porosity and permeability), which could have been influenced by the initial depositional facies, diagenesis and tectonics. On the basis of the study on the geological conditions of reservoirs in the area, it is concluded that sedimetary facies, diagenesis and tectonic actions can provide an important foundation for gas pool formation, which can also control the accumulation and distribution of gas reservoirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent years research indicated that middle-south section of Da Hinggan Mountains metallogenic belt has two periods(Hercynian and Yanshanian) characteristics of metallogenesis, as well as the most of ore deposits in the area closely relate to Permian strata. Longtoushan ore deposit discovered in 2004 is an Ag-Pb-Zn polymetallic ore deposit born in Permian and located in the east hillside of the metallogenic belt, which has considerable resources potentials. It has important research value for its good metallogenic location and blank research history. Base on the detail field geology studies, the geology characteristics of "two stages and three kinds of metallogensis" has established. According to further work through geochemistry research including trace element, REE, S, Pb and Sr isotope, as well as petrography, microtemperature measurement, Laser Raman analysis and thermodynamics calculation of fluid inclusion, origin and characteristic of the ore-forming material and fluid has been discussed. And a new technology of single pellet Rb-Sr isochrones has been tried for dating its born time. Bae on above work, study of ore deposit comparison has been carried out, and metallogesis controlling factor and geological prospecting symbol have been summarized. Finally, metallogenic model and prospecting model have been established. According to above, the next step work direction has been proposed. Main achievement of the paper are listed as follow: 1.Longtoushan ore deposit has experienced two metallogenic periods including hot-water sedimentation period and hydrothermal reformation period. There are three kinds of metallizing phase: bedded(or near-bedded) phase, vein-shaped phase and pipe-shaped phase. The mian metallogenic period is hot-water sedimentation period. 2.Ore deposit geochemistry research indicated that the metal sulfides have charcateristic of hot-water sedimentation metallogensis, but generally suffered later hydrothermal transformation. The barite mineral isotope content is homogenous, showing the seabed hot-water sedimentation origin characteristic. Wall rock, such as tuff is one of metallogenic material origins. Both of Pb model age and Rb-Sr isochrone research older age value than that of strata, possibly for been influenced by hydrothermal transformation, and interfusion of ancient basis material. 3.There are two kinds of main metallogenic fluid inclusion in barite of the Longtoushan ore deposit, which are rich gas phase( C type) and liquid phase (D type). Their size is 2~7um, and principal components is H2O. Both kinds of fluid inclusion have freezing point temperature -7.1~-2.4℃ and -5.5~-0.3℃, salinity 4.0~10.6wt% and 0.5~8.5wt%, homogeneous temperature 176.8~361.6℃ and 101.4~279.9℃, which peak value around 270℃ and 170℃, respectively. Density of the ore-forming fluid is 0.73~0.97g/cm3, and metallogenic pressure is 62.3×105~377.9×105Pa. Above characteristic of the fluid inclusion are well geared to that of ore deposit originated in seabed hot-water sedimentation. 4.Through the comparison research, that Longtoushan ore deposit has main characteristic of hot-water sedimentation ore deposit has been indicated. Ore-forming control factor and prospecting symbol of it has been summarized, as well as metallogenic model and prospecting model. Next step work direction about prospecting has also been proposed finally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Beishan orogenic collage locates at the triple-joint among Xinjiang, Gansu, and Inner Mongolia Provinces, at which the Siberian, Tarim and North China plates join together. It also occupies the central segment of the southern Central Asian Orogenic Belt (CAOB). The main study area in the present suty focused on the southwest part of the Beishan Mountain, which can be subdivided into four units southernward, the Mazhongshan continental block, Huaniushan Arc, Liuyuan suture zone and Shibanshan-Daqishan Arc. 1. The Huaniushan Arc was formed by northernward dipping subduction from the Orcovician to Permian, in which volcanic rocks ranging from basic to acidic with island arc affinity were widely developed. The granitiod intrusions become smaller and younger southward, whichs indicates a southward rollback of slab. The granitiod intrusions are mainly composed of I type granites, and their geochemical compositions suggest that they have affinities of island arc settings. In the early Paleozoic(440Ma-390Ma). The Shibanshan-Daqishan Arc, however, were produced in the southernward dipping subduction system from Carboniferous to Permian. Volcanic rocks from basic to acidic rocks are typical calcic-alkaline rocks. The granitiod intrusions become smaller and younger northernward, indicating subdution with a northernward rollback. The granitiod intrusions mainly consist of I-type granites, of which geochemical data support they belong to island arc granite. 2. Two series of adakite intrusions and eruptive rocks have been discovered in the southern margin of the Huaniushan Island Arc. The older series formed during Silurian (441.7±2.5Ma) are gneiss granitoid. These adakite granites intruded the early Paleozoic Liuyuan accretionary complex, and have the same age as most of the granite intrusions in the Huanniushan Arc. Their geochemical compostions demonstrate that they were derived from partial melting of the subudcted oceanic slab. These characteristics indicate a young oceanic crust subduction in the early Paleozoic. The late stage adakites with compositons of dacites associate with Nb-enriched basalts, and island arc basalts and dacites. Their geochemistries demonstrate that the adakites are the products of subducted slab melts, whereas the Nb-enriched basalt is products of the mantle wedge which have metasomatized by adakite melts. Such a association indicates the existences of a young ocean slab subduction. 3. The Liuyuan suture zone is composed of late Paleozoic ophiolites and two series of accretionary complexes with age of early Paleozoic. The early Paleozoic accretionary complex extensively intruded by early Palozioc granites is composed of metamorphic clastics, marble, flysch, various metamorphic igneous rocks (ultramafic, mafic and dacite), and eclogite blocks, which are connected by faults. The original compositions of the rocks in this complex are highly varied, including MORB, E-MORB, arc rocks. Geochronological study indicates that they were formed during the Silurian (420.9±2.5Ma and 421.1±4.3Ma). Large-scale granitiods intruded in the accretionary complex suggest a fast growth effect at the south margin of the Huaniushan arc. During late Paleozoic, island arc were developed on this accretionary complex. The late Paleozoic ophiolite has an age of early Permian (285.7±2.2Ma), in which the rock assemblage includes ultra-mafic, gabbros, gabbros veins, massive basalts, pillow basalt, basaltic clastic breccias, and thin layer tuff, with chert on the top.These igneous rocks have both arc and MORB affinities, indicating their belonging to SSZ type ophiolite. Therefore, oceanic basins area were still existed in the Liuyuan area in the early Permian. 4. The mafic-ultramafic complexes are distributed along major faults, and composed of zoned cumulate rocks, in which peridotites are surrounded by pyroxenite, hornblendites, gabbros norite and diorite outward. They have island-arc affinities and are consistent with typical Alaska-type mafic-ultramafic complexes. The geochronological results indicate that they were formed in the early Permian. 5. The Liuyuan A-type granite were formed under post-collisional settings during the late Triassic (230.9±2.5Ma), indicating the persistence of orogenic process till the late Triassic in the study area. Geochronological results suggested that A-type granites become younger southward from the Wulungu A-type granite belt to Liuyuan A-type granite belt, which is in good agreement with the accretionary direction of the CAOB in this area, which indicate that the Liuyuan suture is the final sture of the Paleo-Asin Ocean. 6. Structural geological evidence demonstrate the W-E spreading of main tectonic terrenes. These terrenes had mainly underwent through S-N direction contraction and NE strike-faulting. The study area had experienced a S-N direction compression after the Permian, indicating a collisional event after the Permian. Based on the evidene from sedimentary geology, paleontology, and geomagnetism, our studies indicate that the orogenic process can be subdivided into five stages: (1) the pre-orogenic stage occurred before the Ordovicain; (2) the subduction orogenic stage occurred from the Orcovician to the Permian; (3) the collisional orogenic stage occurred from the late Permian to the late Triassic; (4) the post-collision stage occurred after the Triassic. The Liuyuan areas have a long and complex tectonic evolutional history, and the Liuyuan suture zone is one of the most important sutures. It is the finally suture zone of the paleo-Asian ocean in the Beishan area.