980 resultados para Measurement Error
Resumo:
This study aimed to design and validate the measurement of ankle kinetics (force, moment, and power) during consecutive gait cycles and in the field using an ambulatory system. An ambulatory system consisting of plantar pressure insole and inertial sensors (3D gyroscopes and 3D accelerometers) on foot and shank was used. To test this system, 12 patients and 10 healthy elderly subjects wore shoes embedding this system and walked many times across a gait lab including a force-plate surrounded by seven cameras considered as the reference system. Then, the participants walked two 50-meter trials where only the ambulatory system was used. Ankle force components and sagittal moment of ankle measured by ambulatory system showed correlation coefficient (R) and normalized RMS error (NRMSE) of more than 0.94 and less than 13% in comparison with the references system for both patients and healthy subjects. Transverse moment of ankle and ankle power showed R>0.85 and NRMSE<23%. These parameters also showed high repeatability (CMC>0.7). In contrast, the ankle coronal moment of ankle demonstrated high error and lower repeatability. Except for ankle coronal moment, the kinetic features obtained by the ambulatory system could distinguish the patients with ankle osteoarthritis from healthy subjects when measured in 50-meter trials. The proposed ambulatory system can be easily accessible in most clinics and could assess main ankle kinetics quantities with acceptable error and repeatability for clinical evaluations. This system is therefore suggested for field measurement in clinical applications.
Resumo:
Computer-Aided Tomography Angiography (CTA) images are the standard for assessing Peripheral artery disease (PAD). This paper presents a Computer Aided Detection (CAD) and Computer Aided Measurement (CAM) system for PAD. The CAD stage detects the arterial network using a 3D region growing method and a fast 3D morphology operation. The CAM stage aims to accurately measure the artery diameters from the detected vessel centerline, compensating for the partial volume effect using Expectation Maximization (EM) and a Markov Random field (MRF). The system has been evaluated on phantom data and also applied to fifteen (15) CTA datasets, where the detection accuracy of stenosis was 88% and the measurement accuracy was with an 8% error.
Resumo:
This work is devoted to the problem of reconstructing the basis weight structure at paper web with black{box techniques. The data that is analyzed comes from a real paper machine and is collected by an o®-line scanner. The principal mathematical tool used in this work is Autoregressive Moving Average (ARMA) modelling. When coupled with the Discrete Fourier Transform (DFT), it gives a very flexible and interesting tool for analyzing properties of the paper web. Both ARMA and DFT are independently used to represent the given signal in a simplified version of our algorithm, but the final goal is to combine the two together. Ljung-Box Q-statistic lack-of-fit test combined with the Root Mean Squared Error coefficient gives a tool to separate significant signals from noise.
Resumo:
Electrical impedance tomography (EIT) allows the measurement of intra-thoracic impedance changes related to cardiovascular activity. As a safe and low-cost imaging modality, EIT is an appealing candidate for non-invasive and continuous haemodynamic monitoring. EIT has recently been shown to allow the assessment of aortic blood pressure via the estimation of the aortic pulse arrival time (PAT). However, finding the aortic signal within EIT image sequences is a challenging task: the signal has a small amplitude and is difficult to locate due to the small size of the aorta and the inherent low spatial resolution of EIT. In order to most reliably detect the aortic signal, our objective was to understand the effect of EIT measurement settings (electrode belt placement, reconstruction algorithm). This paper investigates the influence of three transversal belt placements and two commonly-used difference reconstruction algorithms (Gauss-Newton and GREIT) on the measurement of aortic signals in view of aortic blood pressure estimation via EIT. A magnetic resonance imaging based three-dimensional finite element model of the haemodynamic bio-impedance properties of the human thorax was created. Two simulation experiments were performed with the aim to (1) evaluate the timing error in aortic PAT estimation and (2) quantify the strength of the aortic signal in each pixel of the EIT image sequences. Both experiments reveal better performance for images reconstructed with Gauss-Newton (with a noise figure of 0.5 or above) and a belt placement at the height of the heart or higher. According to the noise-free scenarios simulated, the uncertainty in the analysis of the aortic EIT signal is expected to induce blood pressure errors of at least ± 1.4 mmHg.
Resumo:
Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
Several methods have been described to measure intraocular pressure (IOP) in clinical and research situations. However, the measurement of time varying IOP with high accuracy, mainly in situations that alter corneal properties, has not been reported until now. The present report describes a computerized system capable of recording the transitory variability of IOP, which is sufficiently sensitive to reliably measure ocular pulse peak-to-peak values. We also describe its characteristics and discuss its applicability to research and clinical studies. The device consists of a pressure transducer, a signal conditioning unit and an analog-to-digital converter coupled to a video acquisition board. A modified Cairns trabeculectomy was performed in 9 Oryctolagus cuniculus rabbits to obtain changes in IOP decay parameters and to evaluate the utility and sensitivity of the recording system. The device was effective for the study of kinetic parameters of IOP, such as decay pattern and ocular pulse waves due to cardiac and respiratory cycle rhythm. In addition, there was a significant increase of IOP versus time curve derivative when pre- and post-trabeculectomy recordings were compared. The present procedure excludes corneal thickness and error related to individual operator ability. Clinical complications due to saline infusion and pressure overload were not observed during biomicroscopic evaluation. Among the disadvantages of the procedure are the requirement of anesthesia and the use in acute recordings rather than chronic protocols. Finally, the method described may provide a reliable alternative for the study of ocular pressure dynamic alterations in man and may facilitate the investigation of the pathogenesis of glaucoma.
Resumo:
Resumen tomado de la publicación
Resumo:
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Resumo:
Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.
Resumo:
In many epidemiological studies it is common to resort to regression models relating incidence of a disease and its risk factors. The main goal of this paper is to consider inference on such models with error-prone observations and variances of the measurement errors changing across observations. We suppose that the observations follow a bivariate normal distribution and the measurement errors are normally distributed. Aggregate data allow the estimation of the error variances. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators is also discussed. Test statistics are proposed for testing hypotheses of interest. Further, we implement a simple graphical device that enables an assessment of the model`s goodness of fit. Results of simulations concerning the properties of the test statistics are reported. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of liquid sample properties and signal analysis techniques. The sensor performance in non-ideal conditions is studied, considering the thicknesses of adhesive and metallization layers, and the effect of residue of liquid sample which can impregnate on the sample chamber surfaces. These layers are taken into account in the model, and their effects are compensated to reduce the error on density measurement. The results show the contribution of residue layer thickness to density error and its behavior when two signal analysis methods are used. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Measurement-based quantum computation is an efficient model to perform universal computation. Nevertheless, theoretical questions have been raised, mainly with respect to realistic noise conditions. In order to shed some light on this issue, we evaluate the exact dynamics of some single-qubit-gate fidelities using the measurement-based quantum computation scheme when the qubits which are used as a resource interact with a common dephasing environment. We report a necessary condition for the fidelity dynamics of a general pure N-qubit state, interacting with this type of error channel, to present an oscillatory behavior, and we show that for the initial canonical cluster state, the fidelity oscillates as a function of time. This state fidelity oscillatory behavior brings significant variations to the values of the computational results of a generic gate acting on that state depending on the instants we choose to apply our set of projective measurements. As we shall see, considering some specific gates that are frequently found in the literature, the fast application of the set of projective measurements does not necessarily imply high gate fidelity, and likewise the slow application thereof does not necessarily imply low gate fidelity. Our condition for the occurrence of the fidelity oscillatory behavior shows that the oscillation presented by the cluster state is due exclusively to its initial geometry. Other states that can be used as resources for measurement-based quantum computation can present the same initial geometrical condition. Therefore, it is very important for the present scheme to know when the fidelity of a particular resource state will oscillate in time and, if this is the case, what are the best times to perform the measurements.
Resumo:
The aim of this paper is to present a photogrammetric method for determining the dimensions of flat surfaces, such as billboards, based on a single digital image. A mathematical model was adapted to generate linear equations for vertical and horizontal lines in the object space. These lines are identified and measured in the image and the rotation matrix is computed using an indirect method. The distance between the camera and the surface is measured using a lasermeter, providing the coordinates of the camera perspective center. Eccentricity of the lasermeter center related to the camera perspective center is modeled by three translations, which are computed using a calibration procedure. Some experiments were performed to test the proposed method and the achieved results are within a relative error of about 1 percent in areas and distances in the object space. This accuracy fulfills the requirements of the intended applications. © 2005 American Society for Photogrammetry and Remote Sensing.
Resumo:
The aim of this work is to evaluate the influence of point measurements in images, with subpixel accuracy, and its contribution in the calibration of digital cameras. Also, the effect of subpixel measurements in 3D coordinates of check points in the object space will be evaluated. With this purpose, an algorithm that allows subpixel accuracy was implemented for semi-automatic determination of points of interest, based on Fõrstner operator. Experiments were accomplished with a block of images acquired with the multispectral camera DuncanTech MS3100-CIR. The influence of subpixel measurements in the adjustment by Least Square Method (LSM) was evaluated by the comparison of estimated standard deviation of parameters in both situations, with manual measurement (pixel accuracy) and with subpixel estimation. Additionally, the influence of subpixel measurements in the 3D reconstruction was also analyzed. Based on the obtained results, i.e., on the quantification of the standard deviation reduction in the Inner Orientation Parameters (IOP) and also in the relative error of the 3D reconstruction, it was shown that measurements with subpixel accuracy are relevant for some tasks in Photogrammetry, mainly for those in which the metric quality is of great relevance, as Camera Calibration.