959 resultados para Mathematical-theory
Resumo:
In recent years, the econometrics literature has shown a growing interest in the study of partially identified models, in which the object of economic and statistical interest is a set rather than a point. The characterization of this set and the development of consistent estimators and inference procedures for it with desirable properties are the main goals of partial identification analysis. This review introduces the fundamental tools of the theory of random sets, which brings together elements of topology, convex geometry, and probability theory to develop a coherent mathematical framework to analyze random elements whose realizations are sets. It then elucidates how these tools have been fruitfully applied in econometrics to reach the goals of partial identification analysis.
Relative Predicativity and dependent recursion in second-order set theory and higher-orders theories
Resumo:
This article reports that some robustness of the notions of predicativity and of autonomous progression is broken down if as the given infinite total entity we choose some mathematical entities other than the traditional ω. Namely, the equivalence between normal transfinite recursion scheme and new dependent transfinite recursion scheme, which does hold in the context of subsystems of second order number theory, does not hold in the context of subsystems of second order set theory where the universe V of sets is treated as the given totality (nor in the contexts of those of n+3-th order number or set theories, where the class of all n+2-th order objects is treated as the given totality).
Resumo:
We introduce and analyse a theory of finitely stratified general inductive definitions over the natural numbers, inline image, and establish its proof theoretic ordinal, inline image. The definition of inline image bears some similarities with Leivant's ramified theories for finitary inductive definitions.
Resumo:
In spite of the movement to turn political science into a real science, various mathematical methods that are now the staples of physics, biology, and even economics are thoroughly uncommon in political science, especially the study of civil war. This study seeks to apply such methods - specifically, ordinary differential equations (ODEs) - to model civil war based on what one might dub the capabilities school of thought, which roughly states that civil wars end only when one side’s ability to make war falls far enough to make peace truly attractive. I construct several different ODE-based models and then test them all to see which best predicts the instantaneous capabilities of both sides of the Sri Lankan civil war in the period from 1990 to 1994 given parameters and initial conditions. The model that the tests declare most accurate gives very accurate predictions of state military capabilities and reasonable short term predictions of cumulative deaths. Analysis of the model reveals the scale of the importance of rebel finances to the sustainability of insurgency, most notably that the number of troops required to put down the Tamil Tigers is reduced by nearly a full order of magnitude when Tiger foreign funding is stopped. The study thus demonstrates that accurate foresight may come of relatively simple dynamical models, and implies the great potential of advanced and currently unconventional non-statistical mathematical methods in political science.
Resumo:
At present, in the University curricula in most countries, the decision theory and the mathematical models to aid decision making is not included, as in the graduate program like in Doctored and Master´s programs. In the Technical School of High Level Agronomic Engineers of the Technical University of Madrid (ETSIA-UPM), the need to offer to the future engineers training in a subject that could help them to take decisions in their profession was felt. Along the life, they will have to take a lot of decisions. Ones, will be important and others no. In the personal level, they will have to take several very important decisions, like the election of a career, professional work, or a couple, but in the professional field, the decision making is the main role of the Managers, Politicians and Leaders. They should be decision makers and will be paid for it. Therefore, nobody can understand that such a professional that is called to practice management responsibilities in the companies, does not take training in such an important matter. For it, in the year 2000, it was requested to the University Board to introduce in the curricula an optional qualified subject of the second cycle with 4,5 credits titled " Mathematical Methods for Making Decisions ". A program was elaborated, the didactic material prepared and programs as Maple, Lingo, Math Cad, etc. installed in several IT classrooms, where the course will be taught. In the course 2000-2001 this subject was offered with a great acceptance that exceeded the forecasts of capacity and had to be prepared more classrooms. This course in graduate program took place in the Department of Applied Mathematics to the Agronomic Engineering, as an extension of the credits dedicated to Mathematics in the career of Engineering.
Resumo:
The SMS, Simultaneous Multiple Surfaces, design was born to Nonimaging Optics applications and is now being applied also to Imaging Optics. In this paper the wave aberration function of a selected SMS design is studied. It has been found the SMS aberrations can be analyzed with a little set of parameters, sometimes two. The connection of this model with the conventional aberration expansion is also presented. To verify these mathematical model two SMS design systems were raytraced and the data were analyzed with a classical statistical methods: the plot of discrepancies and the quadratic average error. Both the tests show very good agreement with the model for our systems.
Resumo:
In this paper, we investigate effect algebras and base normed spaces from the categorical point of view. We prove that the category of effect algebras is complete and cocomplete as well as the category of base normed spaces is complete, and discuss the contravariant functor from the category of effect algebras to the category of base normed spaces.
Resumo:
In this paper a model for the measuring process of sonic anemometers (ultrasound pulse based) is presented. The differential equations that describe the travel of ultrasound pulses are solved in the general case of non-steady, non-uniform atmospheric flow field. The concepts of instantaneous line-average and travelling pulse-referenced average are established and employed to explain and calculate the differences between the measured turbulent speed (travelling pulse-referenced average) and the line-averaged one. The limit k1l=1 established by Kaimal in 1968, as the maximum value which permits the neglect of the influence of the sonic measuring process on the measurement of turbulent components is reviewed here. Three particular measurement cases are analysed: A non-steady, uniform flow speed field, a steady, non-uniform flow speed field and finally an atmospheric flow speed field. In the first case, for a harmonic time-dependent flow field, Mach number, M (flow speed to sound speed ratio) and time delay between pulses have revealed themselves to be important parameters in the behaviour of sonic anemometers, within the range of operation. The second case demonstrates how the spatial non-uniformity of the flow speed field leads to an influence of the finite transit time of the pulses (M≠0) even in the absence of non-steady behaviour of the wind speed. In the last case, a model of the influence of the sonic anemometer processes on the measurement of wind speed spectral characteristics is presented. The new solution is compared to the line-averaging models existing in the literature. Mach number and time delay significantly distort the measurement in the normal operational range. Classical line averaging solutions are recovered when Mach number and time delay between pulses go to zero in the new proposed model. The results obtained from the mathematical model have been applied to the calculation of errors in different configurations of practical interest, such as an anemometer located on a meteorological mast and the transfer function of a sensor in an atmospheric wind. The expressions obtained can be also applied to determine the quality requirements of the flow in a wind tunnel used for ultrasonic anemometer calibrations.
Resumo:
We treat graphoid and separoid structures within the mathematical framework of model theory, specially suited for representing and analysing axiomatic systems with multiple semantics. We represent the graphoid axiom set in model theory, and translate algebraic separoid structures to another axiom set over the same symbols as graphoids. This brings both structures to a common, sound theoretical ground where they can be fairly compared. Our contribution further serves as a bridge between the most recent developments in formal logic research, and the well-known graphoid applications in probabilistic graphical modelling.
Resumo:
Submitted ACKNOWLEDGMENTS T. B. acknowledges the financial support from SERB, Department of Science and Technology (DST), India [Project Grant No.: SB/FTP/PS-005/2013]. D. G. acknowledges DST, India, for providing support through the INSPIRE fellowship. J. K. acknowledges Government of the Russian Federation (Agreement No. 14.Z50.31.0033 with Institute of Applied Physics RAS).
Resumo:
We demonstrate, by using mathematical modeling of cell division cycle (CDC) dynamics, a potential mechanism for precisely controlling the frequency of cell division and regulating the size of a dividing cell. Control of the cell cycle is achieved by artificially expressing a protein that reversibly binds and inactivates any one of the CDC proteins. In the simplest case, such as the checkpoint-free situation encountered in early amphibian embryos, the frequency of CDC oscillations can be increased or decreased by regulating the rate of synthesis, the binding rate, or the equilibrium constant of the binding protein. In a more complex model of cell division, where size-control checkpoints are included, we show that the same reversible binding reaction can alter the mean cell mass in a continuously dividing cell. Because this control scheme is general and requires only the expression of a single protein, it provides a practical means for tuning the characteristics of the cell cycle in vivo.
Resumo:
Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues (“the energy levels”) follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.
Resumo:
In this dissertation we explore the features of a Gauge Field Theory formulation for continuous spin particles (CSP). To make our discussion as self-contained as possible, we begin by introducing all the basics of Group Theory - and representation theory - which are necessary to understand where the CSP come from. We then apply what we learn from Group Theory to the study of the Lorentz and Poincaré groups, to the point where we are able to construct the CSP representation. Finally, after a brief review of the Higher-Spin formalism, through the Schwinger-Fronsdal actions, we enter the realm of CSP Field Theory. We study and explore all the local symmetries of the CSP action, as well as all of the nuances associated with the introduction of an enlarged spacetime, which is used to formulate the CSP action. We end our discussion by showing that the physical contents of the CSP action are precisely what we expected them to be, in comparison to our Group Theoretical approach.