966 resultados para Marine animals
Resumo:
Recent claims of equivalence of animal and human reasoning are evaluated and a study of avian cognition serves as an exemplar of weaknesses in these arguments. It is argued that current research into neurobiological cognition lacks theoretical breadth to substantiate comparative analyses of cognitive function. Evaluation of a greater range of theoretical explanations is needed to verify claims of equivalence in animal and human cognition. We conclude by exemplifying how the notion of affordances in multi-scale dynamics can capture behavior attributed to processes of analogical and inferential reasoning in animals and humans.
Resumo:
A 4 week intensive measurement campaign was conducted in March–April 2007 at Agnes Water, a remote coastal site on the east coast of Australia. A Volatility-Hygroscopicity-Tandem Differential Mobility Analyser (VH-TDMA) was used to investigate changes in the hygroscopic properties of ambient particles as volatile components were progressively evaporated. Nine out of 18 VH-TDMA volatility scans detected internally mixed multi-component particles in the nucleation and Aitken modes in clean marine air. Evaporation of a volatile, organic-like component in the VH-TDMA caused significant increases in particle hygroscopicity. In 3 scans the increase in hygroscopicity was so large it was explained by an increase in the absolute volume of water uptake by the particle residuals, and not merely an increase in their relative hygroscopicity. This indicates the presence of organic components that were suppressing the hygroscopic growth of mixed particles on the timescale of humidification in the VH-TDMA (6.5 secs). This observation was supported by ZSR calculations for one scan, which showed that the measured growth factors of mixed particles were up to 18% below those predicted assuming independent water uptake of the individual particle components. The observed suppression of water uptake could be due to a reduced rate of hygroscopic growth caused by the presence of organic films or organic-inorganic interactions in solution droplets that had a negative effect on hygroscopicity.
Resumo:
Protein extracts from 22 species of marine macroalgae from Florida and North Carolina were compared for their abilities to agglutinate sheep and rabbit erythrocytes. Protein extracts from 21 algal species agglutinated rabbit erythrocytes compared to 19 for sheep erythrocytes. However, agglutination by brown algal extracts was variable. The agglutination produced by protein extracts from Dictyota dichotoma could be blocked by addition of polyvinylpyrrolidone. Protein extracts from North Carolina macroalgae were also tested against five bacterial species. Three of these agglutinated bacterial cells. Ulva curvata and Bryopsis plumosa agglutinated all five species. Protein extracts from five species of Florida algae were tested for their effects on mitogenesis in mouse splenocytes and human lymphocytes. Gracilaria tikvahiae HBOI Strain G-5, Ulva rigida and Gracilaria verrucosa HBOI Strain G-16S stimulated mitogenesis in mouse splenocytes, while Gracilaria tikvahiae HBOI Strain G-16stimulated mitogenesis in human lymphocytes.
Resumo:
Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of diseases. Since the first isolation of C. pneumoniae TWAR in 1965, all human isolates have been essentially clonal, providing little evolutionary insight. To address this gap, we investigated the genetic diversity of 30 isolates from diverse geographical locations, from both human and animal origin (amphibian, reptilian, equine and marsupial). Based on the level of variation that we observed at 23 discreet gene loci, it was clearly evident that the animal isolates were more diverse than the isolates of human origin. Furthermore, we show that C. pneumoniae isolates could be grouped into five major genotypes, A-E, with A, B, D and E genotypes linked by geographical location, whereas genotype C was found across multiple continents. Our evidence strongly supports two separate animal-to-human cross species transfer events in the evolutionary history of this pathogen. The C. pneumoniae human genotype identified in the USA, Canada, Taiwan, Iran, Japan, Korea and Australia (non- Indigenous) most likely originated from a single amphibian or reptilian lineage, which appears to have been previously geographically widespread. We identified a separate human lineage present in two Australian Indigenous isolates (independent geographical locations). This lineage is distinct and is present in Australian amphibians as well as a range of Australian marsupials.
Resumo:
Water uptake refers to the ability of atmospheric particles to take up water vapour from the surrounding atmosphere. This is an important property that affects particle size and phase and therefore influences many characteristics of aerosols relevant to air quality and climate. However, the water uptake properties of many important atmospheric aerosol systems, including those related to the oceans, are still not fully understood. Therefore, the primary aim of this PhD research program was to investigate the water uptake properties of marine aerosols. In particular, the effect of organics on marine aerosol water uptake was investigated. Field campaigns were conducted at remote coastal sites on the east coast of Australia (Agnes Water; March-April 2007) and west coast of Ireland (Mace Head; June 2007), and laboratory measurements were performed on bubble-generated sea spray aerosols. A combined Volatility-Hygroscopicity-Tandem Differential Mobility Analyser (VH-TDMA) was employed in all experiments. This system probes the changes in the hygroscopic properties of nanoparticles as volatile organic components are progressively evaporated. It also allows particle composition to be inferred from combined volatility-hygroscopicity measurements. Frequent new particle formation and growth events were observed during the Agnes Water campaign. The VH-TDMA was used to investigate freshly nucleated particles (17-22.5 nm) and it was found that the condensation of sulphate and/or organic vapours was responsible for driving particle growth during the events. Aitken mode particles (~40 nm) were also measured with the VH-TDMA. In 3 out of 18 VH-TDMA scans evaporation of a volatile, organic component caused a very large increase in hygroscopicity that could only be explained by an increase in the absolute water uptake of the particle residuals, and not merely an increase in their relative hygroscopicity. This indicated the presence of organic components that were suppressing the hygroscopic growth of mixed particles on the timescale of humidification in the VH-TDMA (6.5 secs). It was suggested that the suppression of water uptake was caused by either a reduced rate of hygroscopic growth due to the presence of organic films, or organic-inorganic interactions in solution droplets that had a negative effect on hygroscopicity. Mixed organic-inorganic particles were rarely observed by the VH-TDMA during the summer campaign conducted at Mace Head. The majority of particles below 100 nm in clean, marine air appeared to be sulphates neutralised to varying degrees by ammonia. On one unique day, 26 June 2007, particularly large concentrations of sulphate aerosol were observed and identified as volcanic emissions from Iceland. The degree of neutralisation of the sulphate aerosol by ammonia was calculated by the VH-TDMA and found to compare well with the same quantity measured by an aerosol mass spectrometer. This was an important verification of the VH-TMDA‘s ability to identify ammoniated sulphate aerosols based on the simultaneous measurement of aerosol volatility and hygroscopicity. A series of measurements were also conducted on sea spray aerosols generated from Moreton Bay seawater samples in a laboratory-based bubble chamber. Accumulation mode sea spray particles (38-173 nm) were found to contain only a minor organic fraction (< 10%) that had little effect on particle hygroscopicity. These results are important because previous studies have observed that accumulation mode sea spray particles are predominantly organic (~80% organic mass fraction). The work presented here suggests that this is not always the case, and that there may be currently unknown factors that are controlling the transfer of organics to the aerosol phase during the bubble bursting process. Taken together, the results of this research program have significantly improved our understanding of organic-containing marine aerosols and the way they interact with water vapour in the atmosphere.
Resumo:
This paper discusses human and post-human relationships with nature and animals, using the work e. Menura Superba1 as a focal point. This interactive artwork takes the form of a Lyre bird in a cage, that mimics it’s audience in evocative ways. It is inspired by the historical practice of displaying taxidermy specimens and live species as trophies of travels to distant lands, and as symbols of wealth and status. In both form and intent the work hybridises elements from Enlightenment culture, with materials that conjure associations with dystopic post human futures (wire, post consumer electronic & other waste, as well working parts such as mobile phone screens, LED’s, camera, and cabling etc). Speculative science fiction, such as Phillip K Dick in Do Androids Dream of Electric Sheep? (Blade Runner), provides prescient stories about future (post) human worlds. This novel remains thought provoking as it describes a world that is all to rapidly approaching: where human activity has caused the destruction of most large animal species. In this fictional world, care for animals is not only a civic duty, it is one of the ways humans distinguish themselves from androids. As in Enlightenment times, ownership of animals (real, taxidermies, ersatz) is a form of commodity fetishism indicative of social status. Though whilst well heeled Victorians may have owned an elephant or have been proud of a trophy specimen, the wealthy in Dick’s future must be content with once common, even ersatz, animals such as sheep and owls, and would be repulsed to the core by the notion of killing an animal, even an ersatz animal, for sport. In becoming post human, humans have sought to separate themselves from the natural world, destroying much of it in the process. No technical prothesis will bring back to life the species we have rendered extinct. This (evolving) relationship between humanity and other species, therefore forms a central question in this work, providing a way of approaching the post human, and problematising anthropocentric perspectives. The world promised by post-human technology is indeed rich with possibility, but without corresponding steps to ensure the sustainability of technology (human society), this paper asks whether the richness of that experience will continue to be mirrored by the richness of the environments within which we exist?