908 resultados para Machines-outils
Resumo:
We describe infinitely scalable pipeline machines with perfect parallelism, in the sense that every instruction of an inline program is executed, on successive data, on every clock tick. Programs with shared data effectively execute in less than a clock tick. We show that pipeline machines are faster than single or multi-core, von Neumann machines for sufficiently many program runs of a sufficiently time consuming program. Our pipeline machines exploit the totality of transreal arithmetic and the known waiting time of statically compiled programs to deliver the interesting property that they need no hardware or software exception handling.
Resumo:
In testing from a Finite State Machine (FSM), the generation of test suites which guarantee full fault detection, known as complete test suites, has been a long-standing research topic. In this paper, we present conditions that are sufficient for a test suite to be complete. We demonstrate that the existing conditions are special cases of the proposed ones. An algorithm that checks whether a given test suite is complete is given. The experimental results show that the algorithm can be used for relatively large FSMs and test suites.
Resumo:
Intelligent Transportation System (ITS) is a system that builds a safe, effective and integrated transportation environment based on advanced technologies. Road signs detection and recognition is an important part of ITS, which offer ways to collect the real time traffic data for processing at a central facility.This project is to implement a road sign recognition model based on AI and image analysis technologies, which applies a machine learning method, Support Vector Machines, to recognize road signs. We focus on recognizing seven categories of road sign shapes and five categories of speed limit signs. Two kinds of features, binary image and Zernike moments, are used for representing the data to the SVM for training and test. We compared and analyzed the performances of SVM recognition model using different features and different kernels. Moreover, the performances using different recognition models, SVM and Fuzzy ARTMAP, are observed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).