934 resultados para MOLECULES
Resumo:
The structural changes of genomic DNA upon interaction with small molecules have been studied in real time using dual-polarization interferometry (DPI). Native or thermally denatured DNA was immobilized on the silicon oxynitride surface via a preadsorbed poly(ethylenimine) (PEI) layer. The mass loading was similar for both types of DNA, however, native DNA formed a looser and thicker layer due to its rigidity, unlike the more flexible denatured DNA, which mixed with PEI to form a denser and thinner layer. Ethidium bromide (EtBr), a classical intercalator, induced the large thickness decrease and density increase of native DNA (double-stranded), but a slight increase in both the thickness and density of denatured DNA (partial single-stranded).
Resumo:
Catalytic degradation of organic dye molecules has attracted extensive attention due to their high toxicity to water resources. In this paper, we propose a novel method for the fabrication of uniform silver-coated ZnO nanowire arrays. The degradation of typical dye molecule rhodamine 6G (R6G), as an example, is investigated in the presence of the as-prepared silver-coated ZnO nanowire arrays. The experimental results show that such composite nanostructures exhibit high catalytic activity, and the reaction follows pseudo-first-order kinetics. Furthermore, these nanowire arrays are desirable SERS substrates for monitoring the catalytic degradation of dye molecules. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more truly the catalytic degradation process occurring on the surface of the catalysts.
Resumo:
A new hydrogen-bonded dinuclear copper(II) coordination compound has been synthesized from the Schiff-base ligand 6-(pyridine-2-ylhydrazonomethyl)phenol (Hphp). The molecular structure of [Cu-2(php)(2)(H2O2)(2)(ClO4)](ClO4)- (H2O) (1), determined by single-crystal X-ray diffraction, reveals the presence of two copper(II) centers held together by means of two strong hydrogen bonds, with O center dot O contacts of only 2.60-2.68 angstrom. Temperature-dependent magnetic susceptibility measurements down to 3 K show that the two metal ions are antiferromagnetically coupled (J = -19.8(2) cm(-1)). This exchange is most likely through two hydrogen-bonding pathways, where a coordinated water on the first Cu, donates a H bond to the O atoms of the coordinated php at the other Cu. This strong O center dot H (water) bonding interaction has been clearly evidenced by theoretical calculations. In the relatively few related cases from the literature, this exchange path, mediated by a (neutral) coordinated water molecule, was not recognized.
Resumo:
We report a novel label-free method for the investigation of the adaptive recognition of small molecules by nucleic acid aptamers using capillary electrophoresis analysis. Cocaine and argininamide were chosen as model molecules, and the two corresponding DNA aptamers were used. These single-strand DNAs folded into their specific secondary structures, which were mainly responsible for the binding of the target molecules with high affinity and specificity. For molecular recognition, the nucleic acid structures then underwent additional conformational changes, while keeping the target molecules stabilized by intermolecular hydrogen bonds. The intrinsic chemical and physical properties of the target molecules enabled them to act as indicators for adaptive binding. Thus any labeling or modification of the aptamers or target molecules were made obsolete. This label-free method for aptamer-based molecular recognition was also successfully applied to biological fluids and therefore indicates that this approach is a promising tool for bioanalysis.
Resumo:
We report a sensitive electrochemical aptasensor for adenosine based on electrochemical impedance spectroscopy measurement, which gives not only a label-free but also a reusable platform to make the detection of small molecules simple and convenient.
Resumo:
Small molecules are difficult to detect by conventional surface plasmon resonance (SPR) spectroscopy due to the fact that the changes in the refractive index resulted from the binding process of small biomolecules are quite small. Here, we report a simple and effective method to detect small biomolecule using SPR spectroscopy and electrochemistry by catalyzed deposition of metal ions on SPR gold film. As an example, the ascorbic acid-mediated deposition of Ag on gold film was monitored by in situ SPR spectrum. The deposition of Ag atom on gold film resulted in an obvious decrease of depth in SPR angular scan curves of reflectance intensity and minimum reflectivity angle. The depth change of the SPR reflectance intensity and minimum reflectivity angle curves mainly relied on the amount of Ag atom deposited on gold film that can be controlled by the concentration of ascorbic acid. By monitoring the deposition of Ag atom on gold film, ascorbic acid was detected in the concentration range of 2 x 10(-5) M to 1 x 10(-3) M. After each of detections, the SPR sensor surface was completely regenerated by a potential step that stripped off the Ag atom. Furthermore, the regeneration process of the sensor surface provides the feasibility for detecting the concentration of ascorbic acid by electrochemical method.
Resumo:
A novel biodegradable aliphatic poly(L-lactide-co-carbonate) bearing pendant acetylene groups was successfully prepared by ring-opening copolymerization of L-lactide (LA) with 5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one (PC) in the presence of benzyl alcohol as initiator with ZnEt2 as catalyst in bulk at 100 degrees C and subsequently used for grafting 2-azidoethyl beta-D-glucopyranoside and 2-azidoethyl beta-lactoside by the typical "click reaction," that is Cu(I)-catalyzed cycloaddition of azide and alkyne. The density of acetylene groups in the copolymer can be tailored by the molar ratio of PC to LA during the copolymerization. The aliphatic copolymers grafted with sugars showed low cytotoxicity to L929 cells, improved hydrophilic properties and specific recognition and binding ability with lectins, that is Concanavalin A (Con A) and Ricinus communis agglutinin (RCA). Therefore, this kind of sugar-grafted copolymer could be a good candidate in variety of biomedical applications.
Resumo:
Scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), has become a powerful tool in building nanoscale structures required by modern industry. In this article, the use of SPM for the manipulation of atoms and molecules for patterning nanostructures for opt-electronic and biomedical applications is reviewed. The principles and procedures of manipulation using STM and AFM-based technologies are presented with an emphasis on their ability to create a wide variety of nanostructures for different applications. The interaction among the atoms/molecules, surface, and tip are discussed. The approaches for positioning the atom/molecule from and to the desired locations and for precisely controlling its movement are elaborated for each specific manipulation technique. As an AFM-based technique, the dip-pen nanolithography is also included. Finally, concluding remarks on technological improvement and future research is provided.
Resumo:
Equilibrium geometries, vibrational frequencies, and dissociation energies of the transition metal carbonyls MCO (M = Nb, Ta, Rh, Ir, Pd, Pt) were studied by use of diverse density functional methods B3LYP, BLYP, B3P86, B3PW91, BHLYP, BP86, and PBE1PBE. It was found that the ground electronic state is (6)Sigma(+) for NbCO and TaCO, (2)Sigma(+) for RhCO,(2)Delta for IrCO, and (1)Sigma(+) for PdCO and PtCO, in agreement with previous theoretical studies. The calculated properties are highly dependent on the functionals employed, in particular for the dissociation energy. For most of the molecules, the predicted bond distance is in agreement with experiments and previous theoretical results. BHLYP is the worst method in reproducing the experimental results compared with the other density functional methods for the title molecules.
Resumo:
A circular bacterial artificial chromosome of 148.9 kbp on human chromosome 3 has been extended and fixed on bare mica substrates using a developed fluid capillary flow method in evaporating liquid drops. Extended circular DNA molecules were imaged with an atomic force microscope (AFM) under ambient conditions. The measured total lengths of the whole DNA molecules were in agreement with sequencing analysis data with an error range of +/-3.6%. This work is important groundwork for probing single nucleotide polymorphisms in the human genome, mapping genomic DNA, manipulating biomolecular nanotechnology, and studying the interaction of DNA-protein complexes investigated by AFM.
Resumo:
Dip-pen nanolithography (DPN) has been developed to pattern monolayer film of various molecules on suitable substrate through the controlled movement of ink-coated atomic force microscopy (AFM) tip, which makes DPN a potentially powerful tool for making the functional nanoscale devices. In this paper, the direct patterning of rhodamine 6G on mica by dip-pen nanolithography was demonstrated. R6G features patterned on the mica was successfully achieved with different tip movement which can be programmed by Nanoscript(TM) language. From the AFM image of R6G patterns, we know that R6G molecule is flatly binding to the mica surface through electrostatic interaction, thus stable R6G nanostructures could be formed on mica. The influence of translation speed and contact time on DPN was discussed. The method can be extended to direct patterning of many other organic molecules, and should open many opportunities for miniaturized optical device and site-specific biological staining.
Resumo:
A novel biodegradable amphiphilic block copolymer PLGG-PEG-PLGG bearing pendant glucose residues is successfully prepared by the coupling reaction of 3-(2-aminoethylthio) propyl-R-D-glucopyranoside with the pendant carboxyl groups of PLGG-PEG-PLGG in the presence of N,N'-carbonyldiimidazole. The polymer PLGG-PEG-PLGG, i.e., poly {(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}-block-poly(ethylene glycol)-block-poly{( lactic acid)-co-[( glycolic acid)-alt-(L-glutamic acid)]}, is prepared by ring-opening copolymerization of L-lactide (LLA) with (3s)-benzoxylcarbonylethylmorpholine-2,5-dione (BEMD) in the presence of dihydroxyl PEG with molecular weight of 2000 as macroinitiator and Sn(Oct)(2) as catalyst, and then by catalytic hydrogenation. The glucose-grafted copolymer shows a lower degree of cytotoxicity to ECV-304 cells and improved specific recognition and binding with Concanavalin A (Con A). Therefore, this kind of glucose-grafted copolymer may find biomedical applications.
Resumo:
An inherently disorganized self-assembled monolayer (SAM) of 2-mercapto-3-n-octylthiophene (MOT) has been formed on a gold bead electrode from its dilute ethanolic solution. The disorganization of the monolayer is attributed to the loose packing of the aliphatic chains of the MOT adsorbates, which results from a large difference in dimension/or cross-sectional area between the head (thiophene thiolate) and the tail (alkane chain) groups. Electrochemical measurements including ac impedance spectroscopy and metal underpotential deposition have shown that the monolayer is almost pinhole free. However, the MOT SAM can be penetrated by an organic probe molecule with affinity for the alkane chain part of the monolayer. Some typical probe molecules with different size and hydrophilicity have been employed to assess the permselectivity of the monolayer. Measurement results demonstrate that the ability of the employed probe molecules to penetrate into the monoalyer is mainly dominated by their hydrophilicity/or hydrophobicity. The results presented here suggest the potential application of MOT monoalyer to effectively modify the electrode surface for several research areas such as electrochemical sensors, electrocatalysis, electroanalysis, and supported hybrid bilayer membranes.