996 resultados para Longitudinal Imaging
Resumo:
Individuals with acute hepatitis B virus (HBV) infection characteristically mount a strong, multispecific cytotoxic T lymphocyte (CTL) response that is effective in eradicating virus. In contrast, this response in chronic carriers is usually weak or undetectable. Since it is generally acknowledged that HBV pathogenesis is immune-mediated, the occurrence of episodes of active liver disease in many carriers suggests that these individuals can mount active CTL responses to HBV. To see whether the detection of circulating CTLs is related to these flare episodes, we have determined the CTL precursor (CTLp) frequencies to HLA-A2-restricted viral peptides in seven patients over a 12-24-month period of their disease. Limiting dilution analyses (LDA) were performed longitudinally to five epitopes comprising the viral capsid (HBc), envelope (HBs) and polymerase (pol) proteins. Assays were performed against a mixture of peptides, or against each individual peptide, to measure overall CTL activity and the multispecificity of the responses, respectively. Since two of the patients were treated with recombinant human interleukin-12 (rHuIL-12) at the time, with one individual achieving complete disease remission a year later after being treated with interferon-alpha, we were also able to examine the effects of these cytokines on HBV cytotoxicity. Our results indicate that weak but detectable CTL responses do occur in chronic carriers which are generally associated with disease flares, although CTLps were also seen occasionally during minimal disease activity. The range of specificities varied between individuals and within each individual during the course of the disease. Finally, we also provide evidence that CTL reactivity is stimulated following treatment with certain cytokines, but is dependent on the time of administration.
Resumo:
Synthetic aperture radar (SAR) images of resonant buried objects are modelled in the presence of ground surface clutter. The method of moments (MoM) is used to model scattered fields from a resonant buried conductor and clutter is modelled as a bivariant Gaussian distribution. A diffraction stack SAR imaging technique is applied to the ultra-wideband waveforms to give a bipolar signal image. A number of examples have been computed to illustrate the combined effects of SAR processing with resonant targets and clutter. SAR images of different targets show differences which may facilitate target identification. To maximise the peak signal-to-clutter ratio, an image correlation technique is applied and the results are shown.
Resumo:
A longitudinal study investigated the claim that phonological memory contributes to vocabulary acquisition in young children. In the first phase, children were given tests of receptive vocabulary, receptive grammar, nonword repetition, phonological sensitivity (or awareness), and performance IQ. In the second phase, children were given the nonword repetition and receptive vocabulary tests. In Session 1, both nonword repetition and phonological sensitivity accounted for variation in receptive vocabulary and grammar after performance IQ effects were controlled. When phonological sensitivity was also controlled, nonword repetition did not account for significant additional variation in receptive vocabulary and grammar, When performance IQ and autoregression effects were controlled, all Session I verbal ability measures predicted Session 2 vocabulary, but only Session 1 vocabulary predicted Session 2 nonword repetition. When phonological sensitivity was also controlled. Session 1 nonword repetition (leniently scored) predicted Session 2 vocabulary. Overall, these findings show qualified support for the claim that the capacity component of nonword repetition contributes directly to vocabulary in young children. They suggest that the association between nonword repetition and vocabulary in young children may, to a substantial extent, reflect a latent phonological processing ability that is also manifest in phonological sensitivity.
Resumo:
A prospective clinical study was carried out to evaluate the influence of posture on perineal ultrasound imaging parameters. One hundred and thirty-two consecutive women presenting with symptoms of lower urinary tract dysfunction were examined by multichannel videourodynamics and perineal ultrasound, both supine and standing. Ultrasound included color Doppler imaging when available, i.e. in a subgroup of 99 patients. The position of the bladder neck at rest was higher in the supine position (P
Resumo:
In a prospective study 105 patients with symptoms of stress incontinence underwent video-urodynamic testing, including resting urethral pressure profilometry and translabial ultrasound. The urethral pressure profile (UPP) included maximum urethral closure pressure (MUCP), functional length (FL) and area under the curve (AUC). Ultrasound parameters included urethral thickness, urethral rotation and bladder neck descent, as well as funneling/opening of the internal urethral meatus on Valsalva maneuver. Levator contraction strength was assessed measuring the cranioventral displacement of the internal meatus. Negative correlations between UPP data and age, parity and previous surgery were observed which were consistent with literature data. There was a positive correlation :between the urethral AP diameter on ultrasound and the MUCP, which agrees with reports showing reduced sphincter thickness or volume in stress-incontinent women. Hypermobility on ultrasound did not correlate with UPP data. However, a lower MUCP correlated with extensive opening of the bladder neck. Finally, there was a trend towards poorer pelvic floor function with lower MUCP measurements.
Resumo:
When patients undergo a magnetic resonance imaging scan, they are subject to both strong static and temporal magnetic fields. The temporal fields are designed to vary at each point in the region being imaged. This is achieved by the use of gradient coils. However, when the gradient coils are switched very rapidly, the strongly time-varying magnetic fields produced can be responsible for stimulating nerves in the peripheral regions of the body. This paper gives a somewhat novel explanation for this phenomenon. The physical mechanism suggested is supported by an illustrative theoretical calculation.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
In many occupational safety interventions, the objective is to reduce the injury incidence as well as the mean claims cost once injury has occurred. The claims cost data within a period typically contain a large proportion of zero observations (no claim). The distribution thus comprises a point mass at 0 mixed with a non-degenerate parametric component. Essentially, the likelihood function can be factorized into two orthogonal components. These two components relate respectively to the effect of covariates on the incidence of claims and the magnitude of claims, given that claims are made. Furthermore, the longitudinal nature of the intervention inherently imposes some correlation among the observations. This paper introduces a zero-augmented gamma random effects model for analysing longitudinal data with many zeros. Adopting the generalized linear mixed model (GLMM) approach reduces the original problem to the fitting of two independent GLMMs. The method is applied to evaluate the effectiveness of a workplace risk assessment teams program, trialled within the cleaning services of a Western Australian public hospital.
Resumo:
Red cell number and size increase during puberty, particularly in males. The aim of the present study was to determine whether expression of genes affecting red cell indices varied with age and sex. Haemoglobin, red cell count, and mean cellular volume were measured longitudinally on 578 pairs of twins at twelve, fourteen and sixteen years of age. Data were analysed using a structural equation modeling approach, in which a variety of univariate and longitudinal simplex models were fitted to the data. Significant heritability was demonstrated for all variables across all ages. The genes involved did not differ between the sexes, although there was evidence for sex limitation in the case of haemoglobin at age twelve. Longitudinal analyses indicated that new genes affecting red cell indices were expressed at different stages of puberty. Some of these genes affected the different red cell indices pleiotropically, while others had effects specific to one variable only.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Murray Valley encephalitis (MVE) virus is a mosquito-borne flavivirus causing severe encephalitis with a resultant high morbidity and mortality. In the period 1989-1993. we undertook a cross-sectional and longitudinal studs by annually screening members of a small remote Aboriginal community in northwestern Australia for MVE virus antibodies. Of the estimated 250-300 people in the community. 249 were tested, and 52.6% had positive serology to MVE. The proportion testing positive increased with increasing age group. and males were slightly more likely to be positive than females. During the study period. a high proportion of the population seroconverted to MVE: the clinical/subclinical ratio seems to be lower than previously reported. Although MVE is mostly asymptomatic, the devastating consequences of clinical illness indicate that advice should be provided regarding the avoidance of mosquito bites. Our longitudinal study showed that the risk of seroconversion was similar for each age group. not just the young.
Resumo:
Spaceborne/airborne synthetic aperture radar (SAR) systems provide high resolution two-dimensional terrain imagery. The paper proposes a technique for combining multiple SAR images, acquired on flight paths slightly separated in the elevation direction, to generate high resolution three-dimensional imagery. The technique could be viewed as an extension to interferometric SAR (InSAR) in that it generates topographic imagery with an additional dimension of resolution. The 3-D multi-pass SAR imaging system is typically characterised by a relatively short ambiguity length in the elevation direction. To minimise the associated ambiguities we exploit the relative phase information within the set of images to track the terrain landscape. The SAR images are then coherently combined, via a nonuniform DFT, over a narrow (in elevation) volume centred on the 'dominant' terrain ground plane. The paper includes a detailed description of the technique, background theory, including achievable resolution, and the results of an experimental study.
Resumo:
Three-dimensional (3D) synthetic aperture radar (SAR) imaging via multiple-pass processing is an extension of interferometric SAR imaging. It exploits more than two flight passes to achieve a desired resolution in elevation. In this paper, a novel approach is developed to reconstruct a 3D space-borne SAR image with multiple-pass processing. It involves image registration, phase correction and elevational imaging. An image model matching is developed for multiple image registration, an eigenvector method is proposed for the phase correction and the elevational imaging is conducted using a Fourier transform or a super-resolution method for enhancement of elevational resolution. 3D SAR images are obtained by processing simulated data and real data from the first European Remote Sensing satellite (ERS-1) with the proposed approaches.