938 resultados para Linear Attention,Conditional Language Model,Natural Language Generation,FLAX,Rare diseases
Resumo:
Before the scenario full of criticism about a medical model that gives privilege to the diseases and not to the diseased, there are many arguments that defend the need of redeem the humanized relationship between doctor and patient. It became indispensable to mold during the medical graduation a professional capable of perform a special care, less instrumental and more humanized; however, even though the advances of the pedagogical program of the medical graduation, we still face numerous challenges in the process of molding. This study has as general goal to understand if the students medicine experience with the Integrative Community Therapy (TCI) at the Primary Attention – APS/Family Healthy Strategy-ESF, presents potential to configure itself while strategy of teaching-learning to the integral and humanized care. It was held a qualitative research with the students of the medical graduation from the tenth to the twelfth semester that had experience with the TCI, as part of the Boarding of Family and Community Medicine – MFC. We used interviews with script and we resorted to analyze the narratives to Gadamerian Hermeneutics. It was possible to find that before join the boarding of MFC, the students were unaware the TCI and their preconceptions lined up with depreciated character. The experience with the TCI enabled the reframing of the prejudices and the build of new concepts. Internship in ESF and participate of TCI revealed potential to learning of the humanized care by the practical exercise with experiences that privilege the built of ties; the autonomy of the patient; the fulfillment of the longitudinality at the care of the patient; the acknowledgment of the power of resilience of the patients, at the strength of the collective, at the pain sharing, at the strength of a good communication, at the gains of qualified listening exercise. The absence of models of what to do was replaced by experiences of pains and joys at the learning of becoming a doctor. The pains spoke of the structural difficulties (inputs), at the get along with the socials vulnerabilities of the users and the difficult of perform a good communication with the patients. The joys were experienced at the finding of the humanized care exercise. Questions as structural difficulties, low number of people with TCI degree, a shortly experience of with TCI, show up as limitations to its utilization as pedagogical tool. In turn, the reflective potential is capable of cause resignifications about the know-how before the pain of the other being very much present at the narratives, signaling the potential of the learning of TCI. Therefore, this study advocate that the participation of the students at the TCI, beyond the power of offering the students a teaching-learning strategy to the humanized care, represents the possibility of enlarge the horizons of those future doctors at a glance much more conscious of the difficulties and potential of a professional at the ESF, contributing to the graduation of more sensitized professionals and prepared to perform an integral and humanized approach of the person and his/her community, contributing to an APS/ESF more resolute and rewarding to everyone.
Resumo:
The paper considers various extended asymmetric multivariate conditional volatility models, and derives appropriate regularity conditions and associated asymptotic theory. This enables checking of internal consistency and allows valid statistical inferences to be drawn based on empirical estimation. For this purpose, we use an underlying vector random coefficient autoregressive process, for which we show the equivalent representation for the asymmetric multivariate conditional volatility model, to derive asymptotic theory for the quasi-maximum likelihood estimator. As an extension, we develop a new multivariate asymmetric long memory volatility model, and discuss the associated asymptotic properties.
Resumo:
ALVES, Janaína da Silva. Análise comparativa e teste empírico da validade dos modelos CAPM tradicional e condicional: o caso das ações da Petrobrás. Revista Ciências Administrativas, Fotaleza, v. 13, n. 1, p.147-157, ago. 2007.
Resumo:
Lors du transport du bois de la forêt vers les usines, de nombreux événements imprévus peuvent se produire, événements qui perturbent les trajets prévus (par exemple, en raison des conditions météo, des feux de forêt, de la présence de nouveaux chargements, etc.). Lorsque de tels événements ne sont connus que durant un trajet, le camion qui accomplit ce trajet doit être détourné vers un chemin alternatif. En l’absence d’informations sur un tel chemin, le chauffeur du camion est susceptible de choisir un chemin alternatif inutilement long ou pire, qui est lui-même "fermé" suite à un événement imprévu. Il est donc essentiel de fournir aux chauffeurs des informations en temps réel, en particulier des suggestions de chemins alternatifs lorsqu’une route prévue s’avère impraticable. Les possibilités de recours en cas d’imprévus dépendent des caractéristiques de la chaîne logistique étudiée comme la présence de camions auto-chargeurs et la politique de gestion du transport. Nous présentons trois articles traitant de contextes d’application différents ainsi que des modèles et des méthodes de résolution adaptés à chacun des contextes. Dans le premier article, les chauffeurs de camion disposent de l’ensemble du plan hebdomadaire de la semaine en cours. Dans ce contexte, tous les efforts doivent être faits pour minimiser les changements apportés au plan initial. Bien que la flotte de camions soit homogène, il y a un ordre de priorité des chauffeurs. Les plus prioritaires obtiennent les volumes de travail les plus importants. Minimiser les changements dans leurs plans est également une priorité. Étant donné que les conséquences des événements imprévus sur le plan de transport sont essentiellement des annulations et/ou des retards de certains voyages, l’approche proposée traite d’abord l’annulation et le retard d’un seul voyage, puis elle est généralisée pour traiter des événements plus complexes. Dans cette ap- proche, nous essayons de re-planifier les voyages impactés durant la même semaine de telle sorte qu’une chargeuse soit libre au moment de l’arrivée du camion à la fois au site forestier et à l’usine. De cette façon, les voyages des autres camions ne seront pas mo- difiés. Cette approche fournit aux répartiteurs des plans alternatifs en quelques secondes. De meilleures solutions pourraient être obtenues si le répartiteur était autorisé à apporter plus de modifications au plan initial. Dans le second article, nous considérons un contexte où un seul voyage à la fois est communiqué aux chauffeurs. Le répartiteur attend jusqu’à ce que le chauffeur termine son voyage avant de lui révéler le prochain voyage. Ce contexte est plus souple et offre plus de possibilités de recours en cas d’imprévus. En plus, le problème hebdomadaire peut être divisé en des problèmes quotidiens, puisque la demande est quotidienne et les usines sont ouvertes pendant des périodes limitées durant la journée. Nous utilisons un modèle de programmation mathématique basé sur un réseau espace-temps pour réagir aux perturbations. Bien que ces dernières puissent avoir des effets différents sur le plan de transport initial, une caractéristique clé du modèle proposé est qu’il reste valable pour traiter tous les imprévus, quelle que soit leur nature. En effet, l’impact de ces événements est capturé dans le réseau espace-temps et dans les paramètres d’entrée plutôt que dans le modèle lui-même. Le modèle est résolu pour la journée en cours chaque fois qu’un événement imprévu est révélé. Dans le dernier article, la flotte de camions est hétérogène, comprenant des camions avec des chargeuses à bord. La configuration des routes de ces camions est différente de celle des camions réguliers, car ils ne doivent pas être synchronisés avec les chargeuses. Nous utilisons un modèle mathématique où les colonnes peuvent être facilement et naturellement interprétées comme des itinéraires de camions. Nous résolvons ce modèle en utilisant la génération de colonnes. Dans un premier temps, nous relaxons l’intégralité des variables de décision et nous considérons seulement un sous-ensemble des itinéraires réalisables. Les itinéraires avec un potentiel d’amélioration de la solution courante sont ajoutés au modèle de manière itérative. Un réseau espace-temps est utilisé à la fois pour représenter les impacts des événements imprévus et pour générer ces itinéraires. La solution obtenue est généralement fractionnaire et un algorithme de branch-and-price est utilisé pour trouver des solutions entières. Plusieurs scénarios de perturbation ont été développés pour tester l’approche proposée sur des études de cas provenant de l’industrie forestière canadienne et les résultats numériques sont présentés pour les trois contextes.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.
Resumo:
ALVES, Janaína da Silva. Análise comparativa e teste empírico da validade dos modelos CAPM tradicional e condicional: o caso das ações da Petrobrás. Revista Ciências Administrativas, Fotaleza, v. 13, n. 1, p.147-157, ago. 2007.
Resumo:
Modern software application testing, such as the testing of software driven by graphical user interfaces (GUIs) or leveraging event-driven architectures in general, requires paying careful attention to context. Model-based testing (MBT) approaches first acquire a model of an application, then use the model to construct test cases covering relevant contexts. A major shortcoming of state-of-the-art automated model-based testing is that many test cases proposed by the model are not actually executable. These \textit{infeasible} test cases threaten the integrity of the entire model-based suite, and any coverage of contexts the suite aims to provide. In this research, I develop and evaluate a novel approach for classifying the feasibility of test cases. I identify a set of pertinent features for the classifier, and develop novel methods for extracting these features from the outputs of MBT tools. I use a supervised logistic regression approach to obtain a model of test case feasibility from a randomly selected training suite of test cases. I evaluate this approach with a set of experiments. The outcomes of this investigation are as follows: I confirm that infeasibility is prevalent in MBT, even for test suites designed to cover a relatively small number of unique contexts. I confirm that the frequency of infeasibility varies widely across applications. I develop and train a binary classifier for feasibility with average overall error, false positive, and false negative rates under 5\%. I find that unique event IDs are key features of the feasibility classifier, while model-specific event types are not. I construct three types of features from the event IDs associated with test cases, and evaluate the relative effectiveness of each within the classifier. To support this study, I also develop a number of tools and infrastructure components for scalable execution of automated jobs, which use state-of-the-art container and continuous integration technologies to enable parallel test execution and the persistence of all experimental artifacts.
Resumo:
Lors du transport du bois de la forêt vers les usines, de nombreux événements imprévus peuvent se produire, événements qui perturbent les trajets prévus (par exemple, en raison des conditions météo, des feux de forêt, de la présence de nouveaux chargements, etc.). Lorsque de tels événements ne sont connus que durant un trajet, le camion qui accomplit ce trajet doit être détourné vers un chemin alternatif. En l’absence d’informations sur un tel chemin, le chauffeur du camion est susceptible de choisir un chemin alternatif inutilement long ou pire, qui est lui-même "fermé" suite à un événement imprévu. Il est donc essentiel de fournir aux chauffeurs des informations en temps réel, en particulier des suggestions de chemins alternatifs lorsqu’une route prévue s’avère impraticable. Les possibilités de recours en cas d’imprévus dépendent des caractéristiques de la chaîne logistique étudiée comme la présence de camions auto-chargeurs et la politique de gestion du transport. Nous présentons trois articles traitant de contextes d’application différents ainsi que des modèles et des méthodes de résolution adaptés à chacun des contextes. Dans le premier article, les chauffeurs de camion disposent de l’ensemble du plan hebdomadaire de la semaine en cours. Dans ce contexte, tous les efforts doivent être faits pour minimiser les changements apportés au plan initial. Bien que la flotte de camions soit homogène, il y a un ordre de priorité des chauffeurs. Les plus prioritaires obtiennent les volumes de travail les plus importants. Minimiser les changements dans leurs plans est également une priorité. Étant donné que les conséquences des événements imprévus sur le plan de transport sont essentiellement des annulations et/ou des retards de certains voyages, l’approche proposée traite d’abord l’annulation et le retard d’un seul voyage, puis elle est généralisée pour traiter des événements plus complexes. Dans cette ap- proche, nous essayons de re-planifier les voyages impactés durant la même semaine de telle sorte qu’une chargeuse soit libre au moment de l’arrivée du camion à la fois au site forestier et à l’usine. De cette façon, les voyages des autres camions ne seront pas mo- difiés. Cette approche fournit aux répartiteurs des plans alternatifs en quelques secondes. De meilleures solutions pourraient être obtenues si le répartiteur était autorisé à apporter plus de modifications au plan initial. Dans le second article, nous considérons un contexte où un seul voyage à la fois est communiqué aux chauffeurs. Le répartiteur attend jusqu’à ce que le chauffeur termine son voyage avant de lui révéler le prochain voyage. Ce contexte est plus souple et offre plus de possibilités de recours en cas d’imprévus. En plus, le problème hebdomadaire peut être divisé en des problèmes quotidiens, puisque la demande est quotidienne et les usines sont ouvertes pendant des périodes limitées durant la journée. Nous utilisons un modèle de programmation mathématique basé sur un réseau espace-temps pour réagir aux perturbations. Bien que ces dernières puissent avoir des effets différents sur le plan de transport initial, une caractéristique clé du modèle proposé est qu’il reste valable pour traiter tous les imprévus, quelle que soit leur nature. En effet, l’impact de ces événements est capturé dans le réseau espace-temps et dans les paramètres d’entrée plutôt que dans le modèle lui-même. Le modèle est résolu pour la journée en cours chaque fois qu’un événement imprévu est révélé. Dans le dernier article, la flotte de camions est hétérogène, comprenant des camions avec des chargeuses à bord. La configuration des routes de ces camions est différente de celle des camions réguliers, car ils ne doivent pas être synchronisés avec les chargeuses. Nous utilisons un modèle mathématique où les colonnes peuvent être facilement et naturellement interprétées comme des itinéraires de camions. Nous résolvons ce modèle en utilisant la génération de colonnes. Dans un premier temps, nous relaxons l’intégralité des variables de décision et nous considérons seulement un sous-ensemble des itinéraires réalisables. Les itinéraires avec un potentiel d’amélioration de la solution courante sont ajoutés au modèle de manière itérative. Un réseau espace-temps est utilisé à la fois pour représenter les impacts des événements imprévus et pour générer ces itinéraires. La solution obtenue est généralement fractionnaire et un algorithme de branch-and-price est utilisé pour trouver des solutions entières. Plusieurs scénarios de perturbation ont été développés pour tester l’approche proposée sur des études de cas provenant de l’industrie forestière canadienne et les résultats numériques sont présentés pour les trois contextes.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.
Resumo:
This article is intended to report an intervention in a SME of the IT sector, aiming at an organizational change process towards a greater proactivity of employees. The presentation of the case includes the diagnosis, intervention, and the beginning of the implementation of innovation projects, based on an adapted model of third generation large-group organizational change methods. In addition to the steps followed, small-world analysis techniques were used, with the intention of determining the existing communication networks; also, a content analysis of collected success stories was made, in order to suggest strong points for a future organizational culture. The results clarified the desirable characteristics of an intervention method with large groups, adapted to Portuguese companies, and effective in organizational innovation project design. The analysis of the success stories helped to determine the strengths of an orientation for the future, while the use of measures of small-world networks allowed us to analyze the existing informal organization. Although this study does not include the completion of the projects, due to difficulties in the company, it can provide a solid basis for application in future interventions.
Resumo:
Perceived accessibility has been acknowledged as an important aspect of transport policy since the 70s. Nevertheless, very few empirical studies have been conducted in this field. When aiming to improve social inclusion, by making sus-tainable transport modes accessible to all, it is important to understand the factors driving perceived accessibility. Un-like conventional accessibility measures, perceived accessibility focuses on the perceived possibilities and ease of en-gaging in preferred activities using different transport modes. We define perceived accessibility in terms of how easy it is to live a satisfactory life with the help of the transport system, which is not necessarily the same thing as the objec-tive standard of the system. According to previous research, perceived accessibility varies with the subjectively-rated quality of the mode of transport. Thus, improvements in quality (e.g. trip planning, comfort, or safety) increase the per-ceived accessibility and make life easier to live using the chosen mode of transport. This study (n=750) focuses on the perceived accessibility of public transport, captured using the Perceived Accessibility Scale PAC (Lättman, Olsson, & Fri-man, 2015). More specifically, this study aims to determine how level of quality affects the perceived accessibility in public transport. A Conditional Process Model shows that, in addition to quality, feeling safe and frequency of travel are important predictors of perceived accessibility. Furthermore, elderly and those in their thirties report a lower level of perceived accessibility to their day-to-day activities using public transport. The basic premise of this study is that sub-jective experiences may be as important as objective indicators when planning and designing for socially inclusive transport systems.
Resumo:
INTRODUCCIÓN. La distrofia muscular de Duchenne es una enfermedad neuromuscular con una herencia recesiva ligada al X que afecta a 1 de cada 3500 niños nacidos vivos. Se produce por mutaciones en el gen DMD que codifica para la distrofina. Se caracteriza por manifestaciones clínicas variables típicas de una distrofia muscular proximal progresiva. OBJETIVO. Realizar el primer registro en Colombia de los pacientes identificados con distrofinopatías, teniendo en cuenta características clínicas y paraclínicas, así como las mutaciones causales de esta patología. METODOLOGÍA Es un estudio descriptivo, transversal, de la revisión de historias clínicas de los pacientes con diagnóstico de DMD atendidos en la consulta de Genética de la Universidad del Rosario durante los años 2006 a 2015. RESULTADOS Se identificaron 99 pacientes, de los cuales 56 (56,56%) corresponden al fenotipo Duchenne y 12 (12,12%) al Becker. No fue posible clasificar a 31 pacientes (31,3%) por falta de datos clínicos. La edad de inicio de los síntomas fue en promedio de 4,41 años. Las mutaciones más frecuentes fueron las deleciones (69%), seguidas por las mutaciones puntuales(14%), las duplicaciones (11%) y por otras mutaciones (4%). CONCLUSIONES Este registro de distrofinopatías es el primero reportado en Colombia y el punto de partida para conocer la incidencia de la enfermedad, caracterización clínica y molecular de los pacientes, garantizando así el acceso oportuno a los nuevos tratamientos de medicina de precisión que permitan mejorar la calidad de vida de los pacientes y sus familias.
Resumo:
Las enfermedades raras o huérfanas corresponden a aquellas con baja prevalencia en la población, y en varios países tienen una definición distinta de acuerdo con el número de pacientes que afectan en la población. La Organización Mundial de la Salud (OMS), las define como un trastorno que afecta de 650 a 1.000 personas por millón de habitantes, de las que se han identificado alrededor de 7.000. En Colombia su prevalencia es menor de 1 por cada 5.000 personas y comprenden: las enfermedades raras, las ultra-huérfanas y las olvidadas. Los pacientes con este tipo de enfermedades imponen retos a los sistemas sanitarios, pues si bien afectan a un bajo porcentaje de la población, su atención implica una alta carga económica por los costos que involucra su atención, la complejidad en su diagnóstico, tratamiento, seguimiento y rehabilitación. El abordaje de las enfermedades raras requiere un manejo interdisciplinar e intersectorial, lo que implica la organización de cada actor del sistema sanitario para su manejo a través de un modelo que abraque las dinámicas posibles entre ellos y las competencias de cada uno. Por lo anterior, y teniendo en cuenta la necesidad de formular políticas sanitarias específicas para la gestión de estas enfermedades, el presente trabajo presenta una aproximación a la formulación de un modelo de gestión para la atención integral de pacientes con enfermedades raras en Colombia. Esta investigación describe los distintos elementos y características de los modelos de gestión clínica y de las enfermedades raras a través de una revisión de literatura, en la que se incluye la descripción de los distintos actores del Sistema de Salud Colombiano, relacionados con la atención integral de estos pacientes para la documentación de un modelo de gestión integral.
Resumo:
Considering different perspectives, the scope of this thesis is to investigate how to improve healthcare resources allocation and the provision efficiency for hip surgeries, a resource-intensive operation, among the most frequently performed on the elderly, with a trend in volume that is increasing in years due to population aging. Firstly, the effect of Time-To-Surgery (TTS) on mortality for hip fracture patients is investigated. The analysis attempts to account for TTS endogeneity due to the inability to fully control for variables affecting patient delay – e.g. patient severity. Exploiting an instrumental variable model, where being admitted on Friday or Saturday predicts longer TTS, findings show exogenous TTS does not have a significant effect on mortality. Thus suggesting surgeons prioritize patients effectively, neutralizing the adverse impact of longer TTS. Then, the volume-outcome relation for total hip replacement surgery is analyzed, seeking to account for selective referral, which may be present in elective surgery context, and induce reverse causality issue in the volume-outcome relation. The analysis employs a conditional choice model where patient travel distance from all regions' hospitals is used as a hospital choice predictor. Findings show the exogenous hospital volume significantly decreases adverse outcomes probability, especially in the short run. Finally, the change in public procurement design enforced in the Romagna LHA (Italy) is exploited to assess its impact on hip prostheses cost, surgeons' implant choice, and patient health outcomes. Hip prostheses are the major cost-driver of hip replacement surgeries, hence it is crucial to design the public tender such that implant prices are minimized, but cost-containment policies have to be weighted with patient well-being. Evidence shows that a cost reduction occurred without a significant surgeons’ choices impact. Positive or no effect of surgeons specialization is found on patients outcomes after the new procurement introduction.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS), and is widely studied as an animal model of the human CNS demyelinating diseases, including multiple sclerosis (Raine, 1984). EAE can be induced by inoculation with whole CNS tissue, purified myelin basic protein (MBP) or myelin proteolipid protein (PLP), together with adjuvants. It may also be induced by the passive transfer of T cells specifically reactive to these myelin antigens. EAE may have either an acute or a chronic relapsing course. Acute EAE closely resembles the human disease acute disseminated encephalomyelitis, while chronic relapsing EAE resembles multiple sclerosis. EAE is also the prototype for T-cell-mediated autoimmune disease in general. This chapter will focus on the immunopathology and pathophysiology of EAE, which are the subjects of investigation in my laboratory.