915 resultados para Left-ventricular Function
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recently, the Tei-index, a noninvasive index that combines systolic and diastolic time intervals, has been proposed to assess global cardiac performance. However, the effects of isoflurane on the Tei-index have not been characterized. This study aimed at studying the effects of 1.0 minimal alveolar concentration isoflurane anesthesia on the pre-ejection period (PEP), left ventricular ejection time (LVET), PEP/LVET ratio, isovolumic relaxation time (IVRT), stroke index (SI), cardiac index (CI), heart rate (HR), and the Tei-index in healthy unpremedicated dogs. We observed significant increases in PEP, PEP/LVET ratio, IVRT, and TEI, whose maximal increases obtained throughout the study were 47%, 48%, 78%, and 56%, respectively. The LVET and HR did not change significantly, whereas the SI and CI decreased during anesthesia (29% and 26%, respectively). In conclusion, isoflurane produced direct effects on the Tei-index. The changes in systolic and diastolic parameters were supportive of this finding and were consistent with an overall impairment of left ventricular function during anesthesia.
Resumo:
BACKGROUND Pregnancy and arterial hypertension (AH) have a prohypertrophic effect on the heart. It is suspected that the 2 conditions combined cause disproportionate myocardial hypertrophy. We sought to evaluate myocardial hypertrophy (LVH) and left ventricular function in normotensive and hypertensive women in the presence or absence of pregnancy.METHODS This prospective cross-sectional study included 193 women divided into 4 groups: hypertensive pregnant (HTP; n = 57), normotensive pregnant (NTP; n = 47), hypertensive nonpregnant (HTNP; n = 41), and normotensive nonpregnant (NTNP; n = 48). After clinical and echocardiographic evaluation, the variables were analyzed using 2-way analysis of variance with pregnancy and hypertension as factors. Left ventricular mass (LVM) was compared using nonparametric analysis of variance and Dunn′s test. Predictors of LVH and diastolic dysfunction were analyzed using logistic regression (significance level, P < 0.05).RESULTS Myocardial hypertrophy was independently associated with hypertension (odds ratio (OR) = 11.1, 95% confidence interval (CI) = 3.2-38.5; P < 0.001) and pregnancy (OR = 6.1, 95% CI = 2.6-14.3; P < 0.001) in a model adjusted for age and body mass index. Nonpregnant women were at greater risk of LVH in the presence of AH (OR = 25.3, 95% CI = 3.15-203.5; P = 0.002). The risk was additionally increased in hypertensive women during pregnancy (OR = 4.3, 95% CI = 1.7-10.9; P = 0.002) in the model adjusted for stroke volume and antihypertensive medication. Although none of the NTNP women presented with diastolic dysfunction, it was observed in 2% of the NTP women, 29% of the HTNP women, and 42% of the HTP women (P < 0.05).CONCLUSIONS Hypertension and pregnancy have a synergistic effect on ventricular remodeling, which elevates a woman's risk of myocardial hypertrophy. © 2013 © American Journal of Hypertension, Ltd 2013. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
High intensity systematic physical training leads to myocardial morphophysiological adaptations. The goal of this study was to investigate if differences in training were correlated with differences in cardiac sympathetic activity.58 males (19-47 years), were divided into three groups: strength group (SG), (20 bodybuilders), endurance group (EG), (20 endurance athletes), and a control group (CG) comprising 18 healthy non-athletes. Cardiac sympathetic innervation was assessed by planar myocardial I-123-metaiodobenzylguanidine scintigraphy using the early and late heart to mediastinal (H/M) ratio, and washout rate (WR).Left ventricular mass index was significantly higher both in SG (P < .001) and EG (P = .001) compared to CG without a statistical significant difference between SG and EG (P = .417). The relative wall thickness was significantly higher in SG compared to CG (P < .001). Both left ventricular ejection fraction and the peak filling rate showed no significant difference between the groups. Resting heart rate was significantly lower in EG compared to CG (P = .006) and SG (P = .002). The late H/M ratio in CG was significantly higher compared to the late H/M for SG (P = .003) and EG (P = .004). However, WR showed no difference between the groups. There was no significant correlation between the parameters of myocardial sympathetic innervation and parameters of left ventricular function.Strength training resulted in a significant increase in cardiac dimensions. Both strength and endurance training seem to cause a reduction in myocardial sympathetic drive. However, myocardial morphological and functional adaptations to training were not correlated with myocardial sympathetic activity.
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Background: We investigated whether 9p21 polymorphisms are associated with cardiovascular events in a group of 611 patients enrolled in the Medical, Angioplasty or Surgery Study II (MASS II), a randomized trial comparing treatments for patients with coronary artery disease (CAD) and preserved left ventricular function. Methods: The participants of the MASS II were genotyped for 9p21 polymorphisms (rs10757274, rs2383206, rs10757278 and rs1333049). Survival curves were calculated with the Kaplan-Meier method and compared with the log-rank statistic. We assessed the relationship between baseline variables and the composite end-point of death, death from cardiac causes and myocardial infarction using a Cox proportional hazards survival model. Results: We observed significant differences between patients within each polymorphism genotype group for baseline characteristics. The frequency of diabetes was lower in patients carrying GG genotype for rs10757274, rs2383206 and rs10757278 (29.4%, 32.8%, 32.0%) compared to patients carrying AA or AG genotypes (49.1% and 39.2%, p = 0.01; 52.4% and 40.1%, p = 0.01; 47.8% and 37.9%, p = 0.04; respectively). Significant differences in genotype frequencies between double and triple vessel disease patients were observed for the rs10757274, rs10757278 and rs1333049. Finally, there was a higher incidence of overall mortality in patients with the GG genotype for rs2383206 compared to patients with AA and AG genotypes (19.5%, 11.9%, 11.0%, respectively; p = 0.04). Moreover, the rs2383206 was still significantly associated with a 1.75-fold increased risk of overall mortality (p = 0.02) even after adjustment of a Cox multivariate model for age, previous myocardial infarction, diabetes, smoking and type of coronary anatomy. Conclusions: Our data are in accordance to previous evidence that chromosome 9p21 genetic variation may constitute a genetic modulator in the cardiovascular system in different scenarios. In patients with established CAD, we observed an association between the rs2383206 and higher incidence of overall mortality and death from cardiac causes in patients with multi-vessel CAD.
Resumo:
Background UCP2 (uncoupling protein 2) plays an important role in cardiovascular diseases and recent studies have suggested that the A55V polymorphism can cause UCP2 dysfunction. The main aim was to investigate the association of A55V polymorphism with cardiovascular events in a group of 611 patients enrolled in the Medical, Angioplasty or Surgery Study II (MASS II), a randomized trial comparing treatments for patients with coronary artery disease and preserved left ventricular function. Methods The participants of the MASS II were genotyped for the A55V polymorphism using allele-specific PCR assay. Survival curves were calculated with the Kaplan–Meier method and evaluated with the log-rank statistic. The relationship between baseline variables and the composite end-point of cardiac death, acute myocardial infarction (AMI), refractory angina requiring revascularization and cerebrovascular accident were assessed using a Cox proportional hazards survival model. Results There were no significant differences for baseline variables according genotypes. After 2 years of follow-up, dysglycemic patients harboring the VV genotype had higher occurrence of AMI (p=0.026), Death+AMI (p=0.033), new revascularization intervention (p=0.009) and combined events (p=0.037) as compared with patients carrying other genotypes. This association was not evident in normoglycemic patients. Conclusions These findings support the hypothesis that A55V polymorphism is associated with UCP2 functional alterations that increase the risk of cardiovascular events in patients with previous coronary artery disease and dysglycemia.
Resumo:
This work is structured as follows: In Section 1 we discuss the clinical problem of heart failure. In particular, we present the phenomenon known as ventricular mechanical dyssynchrony: its impact on cardiac function, the therapy for its treatment and the methods for its quantification. Specifically, we describe the conductance catheter and its use for the measurement of dyssynchrony. At the end of the Section 1, we propose a new set of indexes to quantify the dyssynchrony that are studied and validated thereafter. In Section 2 we describe the studies carried out in this work: we report the experimental protocols, we present and discuss the results obtained. Finally, we report the overall conclusions drawn from this work and we try to envisage future works and possible clinical applications of our results. Ancillary studies that were carried out during this work mainly to investigate several aspects of cardiac resynchronization therapy (CRT) are mentioned in Appendix. -------- Ventricular mechanical dyssynchrony plays a regulating role already in normal physiology but is especially important in pathological conditions, such as hypertrophy, ischemia, infarction, or heart failure (Chapter 1,2.). Several prospective randomized controlled trials supported the clinical efficacy and safety of cardiac resynchronization therapy (CRT) in patients with moderate or severe heart failure and ventricular dyssynchrony. CRT resynchronizes ventricular contraction by simultaneous pacing of both left and right ventricle (biventricular pacing) (Chapter 1.). Currently, the conductance catheter method has been used extensively to assess global systolic and diastolic ventricular function and, more recently, the ability of this instrument to pick-up multiple segmental volume signals has been used to quantify mechanical ventricular dyssynchrony. Specifically, novel indexes based on volume signals acquired with the conductance catheter were introduced to quantify dyssynchrony (Chapter 3,4.). Present work was aimed to describe the characteristics of the conductancevolume signals, to investigate the performance of the indexes of ventricular dyssynchrony described in literature and to introduce and validate improved dyssynchrony indexes. Morevoer, using the conductance catheter method and the new indexes, the clinical problem of the ventricular pacing site optimization was addressed and the measurement protocol to adopt for hemodynamic tests on cardiac pacing was investigated. In accordance to the aims of the work, in addition to the classical time-domain parameters, a new set of indexes has been extracted, based on coherent averaging procedure and on spectral and cross-spectral analysis (Chapter 4.). Our analyses were carried out on patients with indications for electrophysiologic study or device implantation (Chapter 5.). For the first time, besides patients with heart failure, indexes of mechanical dyssynchrony based on conductance catheter were extracted and studied in a population of patients with preserved ventricular function, providing information on the normal range of such a kind of values. By performing a frequency domain analysis and by applying an optimized coherent averaging procedure (Chapter 6.a.), we were able to describe some characteristics of the conductance-volume signals (Chapter 6.b.). We unmasked the presence of considerable beat-to-beat variations in dyssynchrony that seemed more frequent in patients with ventricular dysfunction and to play a role in discriminating patients. These non-recurrent mechanical ventricular non-uniformities are probably the expression of the substantial beat-to-beat hemodynamic variations, often associated with heart failure and due to cardiopulmonary interaction and conduction disturbances. We investigated how the coherent averaging procedure may affect or refine the conductance based indexes; in addition, we proposed and tested a new set of indexes which quantify the non-periodic components of the volume signals. Using the new set of indexes we studied the acute effects of the CRT and the right ventricular pacing, in patients with heart failure and patients with preserved ventricular function. In the overall population we observed a correlation between the hemodynamic changes induced by the pacing and the indexes of dyssynchrony, and this may have practical implications for hemodynamic-guided device implantation. The optimal ventricular pacing site for patients with conventional indications for pacing remains controversial. The majority of them do not meet current clinical indications for CRT pacing. Thus, we carried out an analysis to compare the impact of several ventricular pacing sites on global and regional ventricular function and dyssynchrony (Chapter 6.c.). We observed that right ventricular pacing worsens cardiac function in patients with and without ventricular dysfunction unless the pacing site is optimized. CRT preserves left ventricular function in patients with normal ejection fraction and improves function in patients with poor ejection fraction despite no clinical indication for CRT. Moreover, the analysis of the results obtained using new indexes of regional dyssynchrony, suggests that pacing site may influence overall global ventricular function depending on its relative effects on regional function and synchrony. Another clinical problem that has been investigated in this work is the optimal right ventricular lead location for CRT (Chapter 6.d.). Similarly to the previous analysis, using novel parameters describing local synchrony and efficiency, we tested the hypothesis and we demonstrated that biventricular pacing with alternative right ventricular pacing sites produces acute improvement of ventricular systolic function and improves mechanical synchrony when compared to standard right ventricular pacing. Although no specific right ventricular location was shown to be superior during CRT, the right ventricular pacing site that produced the optimal acute hemodynamic response varied between patients. Acute hemodynamic effects of cardiac pacing are conventionally evaluated after stabilization episodes. The applied duration of stabilization periods in most cardiac pacing studies varied considerably. With an ad hoc protocol (Chapter 6.e.) and indexes of mechanical dyssynchrony derived by conductance catheter we demonstrated that the usage of stabilization periods during evaluation of cardiac pacing may mask early changes in systolic and diastolic intra-ventricular dyssynchrony. In fact, at the onset of ventricular pacing, the main dyssynchrony and ventricular performance changes occur within a 10s time span, initiated by the changes in ventricular mechanical dyssynchrony induced by aberrant conduction and followed by a partial or even complete recovery. It was already demonstrated in normal animals that ventricular mechanical dyssynchrony may act as a physiologic modulator of cardiac performance together with heart rate, contractile state, preload and afterload. The present observation, which shows the compensatory mechanism of mechanical dyssynchrony, suggests that ventricular dyssynchrony may be regarded as an intrinsic cardiac property, with baseline dyssynchrony at increased level in heart failure patients. To make available an independent system for cardiac output estimation, in order to confirm the results obtained with conductance volume method, we developed and validated a novel technique to apply the Modelflow method (a method that derives an aortic flow waveform from arterial pressure by simulation of a non-linear three-element aortic input impedance model, Wesseling et al. 1993) to the left ventricular pressure signal, instead of the arterial pressure used in the classical approach (Chapter 7.). The results confirmed that in patients without valve abnormalities, undergoing conductance catheter evaluations, the continuous monitoring of cardiac output using the intra-ventricular pressure signal is reliable. Thus, cardiac output can be monitored quantitatively and continuously with a simple and low-cost method. During this work, additional studies were carried out to investigate several areas of uncertainty of CRT. The results of these studies are briefly presented in Appendix: the long-term survival in patients treated with CRT in clinical practice, the effects of CRT in patients with mild symptoms of heart failure and in very old patients, the limited thoracotomy as a second choice alternative to transvenous implant for CRT delivery, the evolution and prognostic significance of diastolic filling pattern in CRT, the selection of candidates to CRT with echocardiographic criteria and the prediction of response to the therapy.
Resumo:
Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. In the current study, we investigated the efficiency and safety of a protocol involving in vivo electroporation for gene transfer to the beating heart. Adult male rats were anesthetised and the heart exposed through a left thoracotomy. Naked plasmid DNA was injected retrograde into the transiently occluded coronary sinus before the electric pulses were applied. Animals were sacrificed at specific time points and gene expression was detected. Results were compared to the group of animals where no electric pulses were applied. No post-procedure arrhythmia was observed. Left ventricular function was temporarily altered only in the group were high pulses were applied; CK-MB (Creatine kinase) and TNT (Troponin T) were also altered only in this group. Histology showed no signs of toxicity. Gene expression was highest at day one. Our results provide evidence that in vivo electroporation with an optimized protocol is a safe and effective tool for nonviral gene delivery to the beating heart. This method may be promising for clinical settings especially for perioperative gene delivery.
Resumo:
Morbidity and mortality of myocardial infarction remains significant with resulting left ventricular function presenting as a major determinant of clinical outcome. Protecting the myocardium against ischemia reperfusion injury has become a major therapeutic goal and the identification of key signaling pathways has paved the way for various interventions, but until now with disappointing results. This article describes the recently discovered new role of G-protein-coupled receptor kinase-2 (GRK2), which is known to critically influence the development and progression of heart failure, in acute myocardial injury. This article focuses on potential applications of the GRK2 peptide inhibitor βARKct in ischemic myocardial injury, the use of GRK2 as a biomarker in acute myocardial infarction and discusses the challenges of translating GRK2 inhibition as a cardioprotective strategy to a possible future clinical application.
Resumo:
BACKGROUND: The arterial switch operation (ASO) is currently the treatment of choice in neonates with transposition of the great arteries (TGA). The outcome in childhood is encouraging but only limited data for long-term outcome into adulthood exist. METHODS AND RESULTS: We studied 145 adult patients (age>16, median 25years) with ASO followed at our institution. Three patients died in adulthood (mortality 2.4/1000-patient-years). Most patients were asymptomatic and had normal left ventricular function. Coronary lesions requiring interventions were rare (3 patients) and in most patients related to previous surgery. There were no acute coronary syndromes. Aortic root dilatation was frequent (56% patients) but rarely significant (>45mm in 3 patients, maximal-diameter 49mm) and appeared not to be progressive. There were no acute aortic events and no patient required elective aortic root surgery. Progressive neo-aortic-valve dysfunction was not observed in our cohort and only 1 patient required neo-aortic-valve replacement. Many patients (42.1%), however, had significant residual lesions or required reintervention in adulthood. Right ventricular outflow tract lesions or dysfunction of the neo-pulmonary-valve were frequent and 8 patients (6%) required neo-pulmonary-valve replacement. Cardiac interventions during childhood (OR 3.0, 95% CI 1.7-5.4, P<0.0001) were strong predictors of outcome (cardiac intervention/significant residual lesion/death) in adulthood. CONCLUSIONS: Adult patients with previous ASO remain free of acute coronary or aortic complications and have low mortality. However, a large proportion of patients require re-interventions or present with significant right sided lesions. Life-long cardiac follow-up is, therefore, warranted. Periodic noninvasive surveillance for coronary complications appears to be safe in adult ASO patients.