881 resultados para Learning Bayesian Networks
Resumo:
Many of the emerging telecom services make use of Outer Edge Networks, in particular Home Area Networks. The configuration and maintenance of such services may not be under full control of the telecom operator which still needs to guarantee the service quality experienced by the consumer. Diagnosing service faults in these scenarios becomes especially difficult since there may be not full visibility between different domains. This paper describes the fault diagnosis solution developed in the MAGNETO project, based on the application of Bayesian Inference to deal with the uncertainty. It also takes advantage of a distributed framework to deploy diagnosis components in the different domains and network elements involved, spanning both the telecom operator and the Outer Edge networks. In addition, MAGNETO features self-learning capabilities to automatically improve diagnosis knowledge over time and a partition mechanism that allows breaking down the overall diagnosis knowledge into smaller subsets. The MAGNETO solution has been prototyped and adapted to a particular outer edge scenario, and has been further validated on a real testbed. Evaluation of the results shows the potential of our approach to deal with fault management of outer edge networks.
Resumo:
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson’s patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson’s disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.
Resumo:
Date of Acceptance: 13/07/2015
Resumo:
Designing educational resources allow students to modify their learning process. In particular, on-line and downloadable educational resources have been successfully used in engineering education the last years [1]. Usually, these resources are free and accessible from web. In addition, they are designed and developed by lecturers and used by their students. But, they are rarely developed by students in order to be used by other students. In this work-in-progress, lecturers and students are working together to implement educational resources, which can be used by students to improve the learning process of computer networks subject in engineering studies. In particular, network topologies to model LAN (Local Area Network) and MAN (Metropolitan Area Network) are virtualized in order to simulate the behavior of the links and nodes when they are interconnected with different physical and logical design.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Social networks constitute a major channel for the diffusion of information and the formation of attitudes in a society. Introducing a dynamic model of social learning, the first part of this thesis studies the emergence of socially influential individuals and groups, and identifies the characteristics that make them influential. The second part uses a Bayesian network game to analyse the role of social interaction and conformism in the making of decisions whose returns or costs are ex ante uncertain.
Resumo:
The performance of feed-forward neural networks in real applications can be often be improved significantly if use is made of a-priori information. For interpolation problems this prior knowledge frequently includes smoothness requirements on the network mapping, and can be imposed by the addition to the error function of suitable regularization terms. The new error function, however, now depends on the derivatives of the network mapping, and so the standard back-propagation algorithm cannot be applied. In this paper, we derive a computationally efficient learning algorithm, for a feed-forward network of arbitrary topology, which can be used to minimize the new error function. Networks having a single hidden layer, for which the learning algorithm simplifies, are treated as a special case.
Resumo:
An overview of neural networks, covering multilayer perceptrons, radial basis functions, constructive algorithms, Kohonen and K-means unupervised algorithms, RAMnets, first and second order training methods, and Bayesian regularisation methods.
Resumo:
We consider the problem of on-line gradient descent learning for general two-layer neural networks. An analytic solution is presented and used to investigate the role of the learning rate in controlling the evolution and convergence of the learning process.
Resumo:
A family of measurements of generalisation is proposed for estimators of continuous distributions. In particular, they apply to neural network learning rules associated with continuous neural networks. The optimal estimators (learning rules) in this sense are Bayesian decision methods with information divergence as loss function. The Bayesian framework guarantees internal coherence of such measurements, while the information geometric loss function guarantees invariance. The theoretical solution for the optimal estimator is derived by a variational method. It is applied to the family of Gaussian distributions and the implications are discussed. This is one in a series of technical reports on this topic; it generalises the results of ¸iteZhu95:prob.discrete to continuous distributions and serve as a concrete example of a larger picture ¸iteZhu95:generalisation.
Resumo:
We present an analytic solution to the problem of on-line gradient-descent learning for two-layer neural networks with an arbitrary number of hidden units in both teacher and student networks. The technique, demonstrated here for the case of adaptive input-to-hidden weights, becomes exact as the dimensionality of the input space increases.
Resumo:
An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
We study the effect of two types of noise, data noise and model noise, in an on-line gradient-descent learning scenario for general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units. Data is then corrupted by Gaussian noise affecting either the output or the model itself. We examine the effect of both types of noise on the evolution of order parameters and the generalization error in various phases of the learning process.
Resumo:
We complement recent advances in thermodynamic limit analyses of mean on-line gradient descent learning dynamics in multi-layer networks by calculating fluctuations possessed by finite dimensional systems. Fluctuations from the mean dynamics are largest at the onset of specialisation as student hidden unit weight vectors begin to imitate specific teacher vectors, increasing with the degree of symmetry of the initial conditions. In light of this, we include a term to stimulate asymmetry in the learning process, which typically also leads to a significant decrease in training time.
Resumo:
In the present study, multilayer perceptron (MLP) neural networks were applied to help in the diagnosis of obstructive sleep apnoea syndrome (OSAS). Oxygen saturation (SaO2) recordings from nocturnal pulse oximetry were used for this purpose. We performed time and spectral analysis of these signals to extract 14 features related to OSAS. The performance of two different MLP classifiers was compared: maximum likelihood (ML) and Bayesian (BY) MLP networks. A total of 187 subjects suspected of suffering from OSAS took part in the study. Their SaO2 signals were divided into a training set with 74 recordings and a test set with 113 recordings. BY-MLP networks achieved the best performance on the test set with 85.58% accuracy (87.76% sensitivity and 82.39% specificity). These results were substantially better than those provided by ML-MLP networks, which were affected by overfitting and achieved an accuracy of 76.81% (86.42% sensitivity and 62.83% specificity). Our results suggest that the Bayesian framework is preferred to implement our MLP classifiers. The proposed BY-MLP networks could be used for early OSAS detection. They could contribute to overcome the difficulties of nocturnal polysomnography (PSG) and thus reduce the demand for these studies.