767 resultados para Learning Analysis
Resumo:
Peer-reviewed
Resumo:
In this study we analize the application of the reflective learning during initial formation mathematics teachers. This model is based on the sociocultural theories of the human learning and assumes that the interaction and the contrast make possible the coconstruction and the active reconstruction of knowledge.In order to make the study, it was left from a sample of 29 teaching students. The qualitative analysis allowed to identify factors that facilitate the incorporation of the reflective learning in university teaching, as well as the degree of effectiveness of this model to learn to teach mathematics
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
The thesis deals with the phenomenon of learning between organizations in innovation networks that develop new products, services or processes. Inter organizational learning is studied especially at the level of the network. The role of the network can be seen as twofold: either the network is a context for inter organizational learning, if the learner is something else than the network (organization, group, individual), or the network itself is the learner. Innovations are regarded as a primary source of competitiveness and renewal in organizations. Networking has become increasingly common particularly because of the possibility to extend the resource base of the organization through partnerships and to concentrate on core competencies. Especially in innovation activities, networks provide the possibility to answer the complex needs of the customers faster and to share the costs and risks of the development work. Networked innovation activities are often organized in practice as distributed virtual teams, either within one organization or as cross organizational co operation. The role of technology is considered in the research mainly as an enabling tool for collaboration and learning. Learning has been recognized as one important collaborative process in networks or as a motivation for networking. It is even more important in the innovation context as an enabler of renewal, since the essence of the innovation process is creating new knowledge, processes, products and services. The thesis aims at providing enhanced understanding about the inter organizational learning phenomenon in and by innovation networks, especially concentrating on the network level. The perspectives used in the research are the theoretical viewpoints and concepts, challenges, and solutions for learning. The methods used in the study are literature reviews and empirical research carried out with semi structured interviews analyzed with qualitative content analysis. The empirical research concentrates on two different areas, firstly on the theoretical approaches to learning that are relevant to innovation networks, secondly on learning in virtual innovation teams. As a result, the research identifies insights and implications for learning in innovation networks from several viewpoints on organizational learning. Using multiple perspectives allows drawing a many sided picture of the learning phenomenon that is valuable because of the versatility and complexity of situations and challenges of learning in the context of innovation and networks. The research results also show some of the challenges of learning and possible solutions for supporting especially network level learning.
Resumo:
Traditionally, school efficiency has been measured as a function of educational production. In the last two decades, however, studies in the economics of education have indicated that more is required to improve school efficiency: researchers must explore how significant changes in school organization affect the performance of at-risk students. In this paper we introduce Henry Levin’s adoption of the X-efficiency approach to education and we describe the efficient and cost-effective characteristics of one Learning Communities Project School that significantly improved its student outcomes and enrollment numbersand reduced its absenteeism rate to zero. The organizational change that facilitatedthese improvements defined specific issues to address. Students’ school success became the focus of the school project, which also offered specific incentives, selected teachers, involved parents and community members in decisions, and used the most efficient technologies and methods. This case analysis reveals new two elements—family training and community involvement—that were not explicit parts of Levin’s adaptation. The case of the Antonio Machado Public School should attract the attention of both social scientists and policy makers
Resumo:
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm(3) isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.
Resumo:
In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.
Resumo:
The main premise of Vygotsky’s cultural-historical theory is that to promotelearning, and thus development, educators must intervene in, and change, the students’ socio-cultural context. Vygotsky’s theory, however, has been misinterpreted and the opposite approach has been accepted: the teaching is adapted, according to the context. The result is widespread failure in schools. This article reclaims the true transformative meaning of Vygotskian theory and shows how successful schools in several countries implement various actions to transform their social and cultural environment. Data is presented from six casestudies of successful schools conducted in five European countries. The analysis showsthat these actions improve instrumental learning and, consequently, cognitive development. All these efforts focus on teaching methods that aim to increase the amount that students learn
Resumo:
This paper describes a bibliographic analysis of the vision of Marshal McLuhan and the vision adopted by diverse current authors regarding the use of new interactive learning technologies. The paper also analyzes the transformation that will have to take place in the formal surroundings of education in order to improve their social function. The main points of view and contributions made by diverse authors are discussed. It is important that all actors involved in the educational process take in consideration these contributions in order to be ready for future changes.
Resumo:
The music is a compulsory subject in the first stage of primary education. We detected several teachers from different educational areas, including the area of music, using e-learning platforms and web tools for teaching the curriculum that marks the “Department of Education of the Generalitat de Catalunya”. From the body of analysis has drawn the picture in e-learning platforms, analyzing the types and uses. Through the sample of e-learning platforms in music education, have identified four schools with e-learning platforms in advanced stage. We performed a case study on one of these platforms for content analysis and validate the interview format used; this has served to create a model that can be used in other centers with e-learning platform for music subject.
Resumo:
The focus of this Master’s Thesis is on knowledge sharing in a virtual Learning community. The theoretical part of this study aims at presenting the theory of knowledge sharing, competence development and learning in virtual teams. The features of successful learning organizations as well as enablers of effective knowledge sharing in virtual communities are also introduced to the reader in the theoretical framework. The empirical research for this study was realized in a global ICT company, specifically in its Human Resources business unit. The research consisted of two rounds of online questionnaires, which were conducted among all the members of the virtual Learning community. The research aim was to find shared opinions concerning the features of a successful virtual Learning community. The analysis of the data in this study was conducted using a qualitative research methodology. The empirical research showed that the main important features of a successful virtual Learning community are members’ passion towards the community way of working as well as the relevance of the content in the virtual community. In general, it was found that knowledge sharing and competence development are important matters in dynamic organizations as well as virtual communities as method and tool for sharing knowledge and hence increasing both individual and organizational knowledge. This is proved by theoretical and by empirical research in this study.
Resumo:
Geographical scale is not merely a technical question. The learning of geographical scale goes beyond geometricunderstanding; it implies the etymological comprehension of the concept, the recognition of the importance of scale in theelaboration of the geographical discourse. It implies placing oneself in the centre of the teaching and learning of Geographyand asking oneself, what scale? Why this scale? What progression of scales? The answer to these questions puts in doubtthe scientific discourse that is presently taught in schools especially on the scale of analysis, the sequencing of studiedspaces and the false dichotomy local and global
Resumo:
Engelskans dominerande roll som internationellt språk och andra globaliseringstrender påverkar också Svenskfinland. Dessa trender påverkar i sin tur förutsättningarna för lärande och undervisning i engelska som främmande språk, det vill säga undervisningsmålen, de förväntade elev- och lärarroller, materialens ändamålsenlighet, lärares och elevers initiala erfarenheter av engelska och engelskspråkiga länder. Denna studie undersöker förutsättningarna för lärande och professionell utveckling i det svenskspråkiga nybörjarklassrummet i engelska som främmande språk. Utgångsläget för 351 nybörjare i engelska som främmande språk och 19 av deras lärare beskrivs och analyseras. Resultaten tyder på att engelska håller på att bli ett andraspråk snarare än ett traditionellt främmande språk för många unga elever. Dessa elever har också goda förutsättningar att lära sig engelska utanför skolan. Sådan var dock inte situationen för alla elever, vilket tyder på att det finns en anmärkningsvärd heterogenitet och även regional variation i det finlandssvenska klassrummet i engelska som främmande språk. Lärarresultaten tyder på att vissa lärare har klarat av att på ett konstruktivt sätt att tackla de förutsättningar de möter. Andra lärare uttrycker frustration över sin arbetssituation, läroplanen, undervisningsmaterialen och andra aktörer som kommer är av betydelse för skolmiljön. Studien påvisar att förutsättningarna för lärande och undervisning i engelska som främmande språk varierar i Svenskfinland. För att stöda elevers och lärares utveckling föreslås att dialogen mellan aktörer på olika nivå i samhället bör förbättras och systematiseras.
Resumo:
The prevailing undergraduate medical training process still favors disconnection and professional distancing from social needs. The Brazilian Ministries of Education and Health, through the National Curriculum Guidelines, the Incentives Program for Changes in the Medical Curriculum (PROMED), and the National Program for Reorientation of Professional Training in Health (PRO-SAÚDE), promoted the stimulus for an effective connection between medical institutions and the Unified National Health System (SUS). In accordance to the new paradigm for medical training, the Centro Universitário Serra dos Órgãos (UNIFESO) established a teaching plan in 2005 using active methodologies, specifically problem-based learning (PBL). Research was conducted through semi-structured interviews with third-year undergraduate students at the UNIFESO Medical School. The results were categorized as proposed by Bardin's thematic analysis, with the purpose of verifying the students' impressions of the new curriculum. Active methodologies proved to be well-accepted by students, who defined them as exciting and inclusive of theory and practice in medical education.
Resumo:
This study was conducted in order to learn how companies’ revenue models will be transformed due to the digitalisation of its products and processes. Because there is still only a limited number of researches focusing solely on revenue models, and particularly on the revenue model change caused by the changes at the business environment, the topic was initially approached through the business model concept, which organises the different value creating operations and resources at a company in order to create profitable revenue streams. This was used as the base for constructing the theoretical framework for this study, used to collect and analyse the information. The empirical section is based on a qualitative study approach and multiple-case analysis of companies operating in learning materials publishing industry. Their operations are compared with companies operating in other industries, which have undergone comparable transformation, in order to recognise either similarities or contrasts between the cases. The sources of evidence are a literature review to find the essential dimensions researched earlier, and interviews 29 of managers and executives at 17 organisations representing six industries. Based onto the earlier literature and the empirical findings of this study, the change of the revenue model is linked with the change of the other dimen-sions of the business model. When one dimension will be altered, as well the other should be adjusted accordingly. At the case companies the transformation is observed as the utilisation of several revenue models simultaneously and the revenue creation processes becoming more complex.