996 resultados para L-NAME


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pain is one of the most common reasons for patients to seek medical care. Bee Apis mellifera venom (AMV) has traditionally been used to treat inflammatory diseases and the alleviation of pain. Herein, we aimed to investigate the visceral antinociceptive potential of A. mellifera bee venom and its possible mechanism of action. Acetic acid-induced writhing assay was used in mice to determine the degree of visceral antinociception. Visceral antinociceptive activity was expressed as the reduction in the number of abdominal constrictions. Mice received an intraperitoneal injection of acetic acid after administration of AMV (0.08 or 0.8 mg/kg; intraperitoneally (i.p.)). In mechanistic studies, separate experiments were realized to examine the role of α2-receptors, nitric oxide, calcium channels, K+ATP channel activation, TRPV1 and opioid receptors on the visceral antinociceptive effect of AMV (0.8 mg/kg), using appropriate antagonists, yohimbine (2 mg/kg), L-NG-Nitroarginine methyl ester (L-NAME, 10 mg/kg), verapamil (5 mg/kg), glibenclamide (5 mg/kg), ruthenium red (3 mg/kg) or naloxone (2 mg/kg). AMV presented visceral antinociceptive activity in both doses tested (0.08 and 0.8 mg/Kg). Visceral antinociceptive effect of AMV was resistant to all the antagonists used. Mice showed no significant alterations in locomotion frequency, indicating that the observed antinociception is not a consequence of motor abnormality. Although AMV efficient diminished the acetic acid-evoked pain-related behavior, its mechanism is unclear from this study and future studies are needed to verify how the venom exerts its antinociceptive action.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calorie restriction (CR) enhances animal life span and prevents age-related diseases, including neurological decline. Recent evidence suggests that a mechanism involved in CR-induced life-span extension is NO-stimulated mitochondrial biogenesis. We examine here the effects of CR on brain mitochondrial content. CR increased eNOS and nNOS and the content of mitochondria] proteins (cytochrome c oxidase, citrate synthase, and mitofusin) in the brain. Furthermore, we established an in vitro system to study the neurological effects of CR using serum extracted from animals on this diet. In cultured neurons, CR serum enhanced nNOS expression and increased levels of nitrite (a NO product). CR serum also enhanced the levels of cytochrome c oxidase and increased citrate synthase activity and respiratory rates in neurons. CR serum effects were inhibited by L-NAME and mimicked by the NO donor SNAP. Furthermore, both CR sera and SNAP were capable of improving neuronal survival. Overall, our results indicate that CR increases mitochondrial biogenesis in a NO-mediated manner, resulting in enhanced reserve respiratory capacity and improved survival in neurons. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tamoxifen, a selective estrogen receptor modulator, has antifibrotic properties; however, whether it can attenuate renal fibrosis is unknown. In this study, we tested the effects of tamoxifen in a model of hypertensive nephrosclerosis (chronic inhibition of nitric oxide synthesis with L-NAME). After 30 days, treated rats had significantly lower levels of albuminuria as well as lower histologic scores for glomerulosclerosis and interstitial fibrosis than untreated controls. Tamoxifen was renoprotective despite having no effect on the sustained, severe hypertension induced by L-NAME. Tamoxifen prevented the accumulation of extracellular matrix by decreasing the expression of collagen I, collagen III, and fibronectin mRNA and protein. These renoprotective effects associated with inhibition of TGF-beta 1 and plasminogen activator inhibitor-1, and with a significant reduction in a-smooth muscle actin-positive cells in the renal interstitium. Furthermore, tamoxifen abrogated IL-1 beta- and angiotensin-II-induced proliferation of fibroblasts from both kidney explants and from the NRK-49F cell line. Tamoxifen also inhibited the expression of extracellular matrix components and the production and release of TGF-beta 1 into the supernatant of these cells. In summary, tamoxifen exhibits antifibrotic effects in the L-NAME model of hypertensive nephrosclerosis, likely through the inhibition of TGF-beta 1, suggesting that it may have therapeutic use in CKD treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kaurenoic acid [ent-kaur-16-en-19-oic acid (1)] is a diterpene present in several plants including Sphagneticola trilobata. The only documented evidence for its antinociceptive effect is that it inhibits the writhing response induced by acetic acid in mice. Therefore, the analgesic effect of 1 in different models of pain and its mechanisms in mice were investigated further. Intraperitoneal and oral treatment with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid. Oral treatment with 1 also inhibited overt nociception-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), and both phases of the formalin test. Compound 1 also inhibited acute carrageenin- and PGE(2)-induced and chronic CFA-induced inflammatory mechanical hyperalgesia. Mechanistically, 1 inhibited the production of the hyperalgesic cytokines TNF-alpha and IL-1 beta. Furthermore, the analgesic effect of 1 was inhibited by L-NAME, ODQ, KT5823, and glybenclamide treatment, demonstrating that such activity also depends on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that 1 exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of cytokine production and activation of the NO-cyclic GMP-protein lcinase G-ATP-sensitive potassium channel signaling pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caryocar brasiliense Camb. "pequi" is a native plant from the Cerrado region of Brazil that contains bioactive components reported to be antioxidant agents. Previous work has demonstrated that dietary supplementation with pequi decreased the arterial pressure of volunteer athletes. We found that the crude hydroalcoholic extract (CHE) of C. brasiliense leaves relaxed, in a concentration-dependent manner, rat aortic rings precontracted with phenylephrine, and that the butanolic fraction (BF) produced an effect similar to that of the CHE. Aortic relaxation induced by BF was abolished by endothelium removal, by incubation of the nitric oxide synthase inhibitor L-NAME, or the soluble guanylatecyclase inhibitor ODQ. However, incubation with atropine and pyrilamine had no effect on the BF-induced vasorelaxation. Moreover, this effect was not inhibited by indomethacin and tetraethylammonium. The concentration-response curve to calcium in denuded-endothelium rings was not modified after incubation with BF, and the vasorelaxation by BF in endothelium-intact rings precontracted with KCl was abolished after incubation with L-NAME. In addition, administration of BF in anesthetized rats resulted in a reversible hypotension. The results reveal that C. brasiliense possesses both in vivo and in vitro activities and that the vascular effect of BF involves stimulation of the nitric oxide/cyclic GMP pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

de Souza ACCP, Volpini RA, Shimizu MH, Sanches TR, Camara NOS, Semedo P, Rodrigues CE, Seguro AC, Andrade L. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting nuclear factor-kappa B and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol 302: F1045-F1054, 2012. First published January 11, 2012; doi:10.1152/ajprenal.00148.2011.-The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-kappa B activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP + EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-L-arginine methyl ester (L-NAME) simultaneously with EPO administration (CLP + EPO + L-NAME). A fifth group (CLP + EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP + EPO rats presented significantly higher inulin clearance than did CLP and CLP + EPO + L-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP + EPO rats; and inulin clearance was significantly higher in CLP + EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP + EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-alpha activation, NF-kappa B activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-kappa B downregulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6 h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1 alpha) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS. (C) 2012 Elsevier Inc. All rights reserved.