622 resultados para Kalman, filtragem de
Resumo:
O processo da retrolavagem consiste na passagem da água através do filtro em sentido contrário ao fluxo de filtragem com o objetivo de remover partículas orgânicas e inorgânicas retidas no meio filtrante. O projeto de filtros de areia com configurações ineficientes e a ocorrência de condições operacionais inadequadas contribuem para limitar o desempenho desse processo, causando deficiências na limpeza dos meios filtrantes e comprometendo o funcionamento dos sistemas de irrigação localizada. O objetivo do presente trabalho é proporcionar uma revisão sobre os conceitos associados ao processo da retrolavagem nos filtros de areia, relacionando informações existentes na literatura com experiências de laboratório. Foi gerado um texto básico com informações técnico-científicas sobre o tema, visando a criar um momento de reflexão sobre o processo de retrolavagem e a contribuir para a melhoria do desempenho desses equipamentos na irrigação localizada.
Resumo:
Esta pesquisa teve como finalidade mostrar a variação da qualidade da água e sua influência na perda de carga de dois sistemas de filtragem (filtro de disco e manta sintética não tecida) utilizados em um sistema de irrigação localizada por gotejamento. Utilizou-se água de um reservatório aberto, onde foi instalado um módulo de irrigação localizada para o estudo. Para melhor comparação dos filtros, foram utilizados dois índices de uniformidade de distribuição de água para verificar o grau de entupimento dos gotejadores. A pesquisa foi desenvolvida em quatro etapas de 30 dias, realizadas em diferentes estações do ano. Em cada etapa, foram analisados os principais parâmetros físicos, químicos e biológicos da água de irrigação que causam problemas de entupimento nos emissores: sólidos suspensos, turbidez, pH, ferro, manganês, sulfetos, condutividade elétrica, sólidos dissolvidos, dureza, índice de Langelier, algas e bactérias. Os resultados mostraram que os parâmetros químicos que apresentaram médio risco de obstrução aos emissores, foram: pH, ferro e sulfetos. Os parâmetros físicos e biológicos analisados apresentaram baixo risco de entupimento nos gotejadores. No filtro de manta sintética não tecida, a evolução da perda de carga foi mais acentuada e mais rápida em relação ao de disco.
Aplicação de túnel de vento na avaliação de linhas de fluxo geradas por crepinas de filtros de areia
Resumo:
Visando à obtenção de informações técnicas que auxiliem aprimorar a eficiência hidráulica de filtros de areia nos processos de filtragem e retrolavagem, buscou-se avaliar o potencial de utilização de uma bancada didática de túnel de vento como método de visualização e caracterização das linhas de fluxo geradas pela interação da geometria de um modelo de dreno (crepina) com diferentes velocidades de escoamento. Os ensaios foram realizados, instalando-se um modelo comercial de dreno, do tipo cilíndrico, em um módulo experimental construído para ser acoplado a um túnel de vento vertical. Simularam-se as três vazões de escoamento de ar fornecidas pelo módulo, obtendo-se registros fotográficos com uma câmara de alta velocidade, cujas imagens foram tratadas para destacar a disposição das linhas de fluxo e os caminhos preferenciais de escoamento para os sentidos de escoamento de filtragem e retrolavagem. Correlacionou-se, por similitude, o intervalo de operação do túnel de vento com valores de vazão praticados em processos de filtração com água, em filtros de areia comerciais, com 40; 60 e 100 cm de diâmetro. Os resultados obtidos validaram a metodologia proposta, permitindo analisar o efeito da geometria da crepina nas linhas de fluxo experimentais, tanto no modo de filtragem quanto no de retrolavagem.
Resumo:
State-of-the-art predictions of atmospheric states rely on large-scale numerical models of chaotic systems. This dissertation studies numerical methods for state and parameter estimation in such systems. The motivation comes from weather and climate models and a methodological perspective is adopted. The dissertation comprises three sections: state estimation, parameter estimation and chemical data assimilation with real atmospheric satellite data. In the state estimation part of this dissertation, a new filtering technique based on a combination of ensemble and variational Kalman filtering approaches, is presented, experimented and discussed. This new filter is developed for large-scale Kalman filtering applications. In the parameter estimation part, three different techniques for parameter estimation in chaotic systems are considered. The methods are studied using the parameterized Lorenz 95 system, which is a benchmark model for data assimilation. In addition, a dilemma related to the uniqueness of weather and climate model closure parameters is discussed. In the data-oriented part of this dissertation, data from the Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite instrument are considered and an alternative algorithm to retrieve atmospheric parameters from the measurements is presented. The validation study presents first global comparisons between two unique satellite-borne datasets of vertical profiles of nitrogen trioxide (NO3), retrieved using GOMOS and Stratospheric Aerosol and Gas Experiment III (SAGE III) satellite instruments. The GOMOS NO3 observations are also considered in a chemical state estimation study in order to retrieve stratospheric temperature profiles. The main result of this dissertation is the consideration of likelihood calculations via Kalman filtering outputs. The concept has previously been used together with stochastic differential equations and in time series analysis. In this work, the concept is applied to chaotic dynamical systems and used together with Markov chain Monte Carlo (MCMC) methods for statistical analysis. In particular, this methodology is advocated for use in numerical weather prediction (NWP) and climate model applications. In addition, the concept is shown to be useful in estimating the filter-specific parameters related, e.g., to model error covariance matrix parameters.
Resumo:
Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.
Resumo:
Conyza canadensis e C. bonariensis são espécies invasoras cujo relato tem sido cada vez mais frequente, dada sua capacidade de desenvolvimento em áreas com palhada, sob sistema de semeadura direta (SSD). A luz é necessária para a germinação de diversas espécies de plantas daninhas, sendo considerado um fator de superação da dormência das sementes. A germinação de sementes sob SSD sofre o efeito da filtragem de comprimentos de onda pela palhada, que podem influenciar diretamente esse processo. O presente trabalho teve por objetivo estudar o efeito de diferentes filtros de luz sobre a germinação de sementes de C. canadensis e C. bonariensis. Foi realizado um experimento em que as sementes das espécies foram colocadas para germinar sobre papel mata-borrão umedecido com água, dentro de caixas gerbox transparentes envolvidas com filtros de luz azul, verde, vermelho, vermelho-distante, transparente e também em caixas de gerbox preta (ausência de luz). Foi avaliada a germinação aos cinco e 10 dias após a semeadura e no final desse período por mais 10 dias, com todos os tratamentos recebendo luz branca. As sementes de ambas as espécies sofrem significativamente o efeito da filtragem de comprimentos de onda, exceto o filtro vermelho, que proporcionou germinação superior à dos demais filtros, sendo inferior apenas ao transparente.
Resumo:
In this thesis, the suitability of different trackers for finger tracking in high-speed videos was studied. Tracked finger trajectories from the videos were post-processed and analysed using various filtering and smoothing methods. Position derivatives of the trajectories, speed and acceleration were extracted for the purposes of hand motion analysis. Overall, two methods, Kernelized Correlation Filters and Spatio-Temporal Context Learning tracking, performed better than the others in the tests. Both achieved high accuracy for the selected high-speed videos and also allowed real-time processing, being able to process over 500 frames per second. In addition, the results showed that different filtering methods can be applied to produce more appropriate velocity and acceleration curves calculated from the tracking data. Local Regression filtering and Unscented Kalman Smoother gave the best results in the tests. Furthermore, the results show that tracking and filtering methods are suitable for high-speed hand-tracking and trajectory-data post-processing.
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.
Resumo:
The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.
Resumo:
A quadcopter is a helicopter with four rotors, which is mechanically simple device, but requires complex electrical control for each motor. Control system needs accurate information about quadcopter’s attitude in order to achieve stable flight. The goal of this bachelor’s thesis was to research how this information could be obtained. Literature review revealed that most of the quadcopters, whose source-code is available, use a complementary filter or some derivative of it to fuse data from a gyroscope, an accelerometer and often also a magnetometer. These sensors combined are called an Inertial Measurement Unit. This thesis focuses on calculating angles from each sensor’s data and fusing these with a complementary filter. On the basis of literature review and measurements using a quadcopter, the proposed filter provides sufficiently accurate attitude data for flight control system. However, a simple complementary filter has one significant drawback – it works reliably only when the quadcopter is hovering or moving at a constant speed. The reason is that an accelerometer can’t be used to measure angles accurately if linear acceleration is present. This problem can be fixed using some derivative of a complementary filter like an adaptive complementary filter or a Kalman filter, which are not covered in this thesis.
Resumo:
This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.
Resumo:
For the past 20 years, researchers have applied the Kalman filter to the modeling and forecasting the term structure of interest rates. Despite its impressive performance in in-sample fitting yield curves, little research has focused on the out-of-sample forecast of yield curves using the Kalman filter. The goal of this thesis is to develop a unified dynamic model based on Diebold and Li (2006) and Nelson and Siegel’s (1987) three-factor model, and estimate this dynamic model using the Kalman filter. We compare both in-sample and out-of-sample performance of our dynamic methods with various other models in the literature. We find that our dynamic model dominates existing models in medium- and long-horizon yield curve predictions. However, the dynamic model should be used with caution when forecasting short maturity yields
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.