886 resultados para KETONE-BODIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ether ether ketone) and poly(ether diphenyl ether ketone) homopolymers are prepared by nucleophilic substitution routes. Miscibility of PEEK/PEDEK blends has been studied by wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (d.s.c.). The results indicate that for PEEK/PEDEK blends, when the PEDEK content (weight fraction) is greater than 0.20 and less than 0.75, PEEK and PEDEK components form independent crystalline regions, i.e. they are immiscible; when the PEDEK content is in the range W-PEDEK less than or equal to 0.20 or greater than or equal to 0.75, a rich PEEK- or PEDEK-rich content crystallizes from a mixed melt and PEEK and PEDEK are miscible. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of poly(ether ketone ketone) (PEKK) is predicted by using Cerius2 software according to the wide angle X-ray diffraction (WAXD) experiment result. The predicted structure has a planar zigzag chain conformation between ether oxygen and ketone carbons in an orthorhombic lattice. Average zigzag angle is 126 degrees and average torsion angle is 30.32 degrees. The WAXD powder pattern calculated from the crystal packing model is in good agreement with the experiment result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melting behavior of semicrystalline poly(ether ether ketone ketone) (PEEKK) has been studied by differential scanning calorimetry (DSC). When PEEKK is annealed from the amorphous state, it usually shows two melting peaks. The upper melting peaks arise first, and the lower melting peaks are developed later. The upper melting peaks shown in the DSC thermogram are the combination (addition) of three parts: initial crystal formed before scanning; reorganization; and melting-recrystallization of lower melting peaks in the DSC scanning period. In the study of isothermal crystallization kinetics, the Avrami equation was used to analyze the primary process of the isothermal crystallization; the Avrami constant, n, is about 2 for PEEKK from the melt and 1.5 for PEEKK from the glass state. According to the Lauritzen-Hoffman equation, the kinetic parameter of PEEKK from the melt is 851.5 K; the crystallization kinetic parameter of PEEKK is higher than that of PEEK, and suggests the crystallizability of PEEKK is less than that of PEEK. The study of crystallization on PEEKK under nonisothermal conditions is also reported for cooling rates from 2.5 degrees C/min to 40 degrees C/min, and the nonisothermal condition was studied by Mandelkern analysis. The results show the nonisothermal crystallization is different from the isothermal crystallization. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of DSC measurements, the Delta H-f(0) values of the fusion heat for PEEKK-PEBEKK copolymers with various biphenyl contents were obtained by using thermodynamics statistical theory proposed by Flory and graphical method of the specific volume-fusion heat. The results reveal that Delta H-f(0) values determined by these two methods for PEEKK-PEBEKK copolymers with various biphenyl content are nearly the same, and that Delta H-f(0) values are closely dependent on biphenyl content. Delta H-f(0) value is minimum at n(B)=0.35.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variations of unit cell parameters and crystallite size of nine PEEK samples treated at various temperatures have been studied by using Wide-Angle X-ray Diffraction (WAXD), The results indicate a decrease in unit cell parameter a,b and c but an increase in crystallite size L(hkl) With the increase beat treatment temperature. Based on X-ray scattering intensity theory and using the graphic multipeak resolution method, the formula of degree of crystallinity (W-c,W-X) for PEEK is derived. The results calculated are compatible with the density measurement and calorimetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to stress relaxation curves of phenolphthalein polyether ketone (PEK-C) at different temperatures and the principle of the time-temperature equivalence, the master curve of PEK-C at arbitrary reference temperature is obtained. A coupling model is applied to explain quantitatively stress relaxation behaviour of PEK-C at different temperatures. The parameters obtained from the coupling model have important physical meaning. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of a novel poly(aryl ether ketone) [PEDEKmK] was investigated via polarizing optical microscopy (POM), TEM, DSC, SAXS and electron diffraction (ED). A distinct change in lamellar thickness, orientation, and spherulitic morphology was observed due to crystal melting and recrystallization. However, the crystal packing mode is found to be identical before and after the recrystallization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tension-tension fatigue tests were conducted on unnotched injection moulded poly(phenylene ether ketone) (PEK-C) specimens with two stress ratios, R. The fatigue behaviour of this material is described. The S-N curves (S = alternating stress, N = number of cycles to failure) for different R values have the same general shape, but the curve for bigger R is shifted to long cycles. A fatigue lifetime inversion is observed from constructed S-N curves. Examinations of failure surfaces and analyses of the fatigue data reveal that the fatigue failure mechanism of the material studied is crack growth dominated. But the manner of the fatigue crack initiation and propagation depends on the maximum cyclic stress applied. At higher stresses, the fatigue crack originates at the corner of the specimen and propagates inward; at lower stresses, the fatigue crack nucleates at an internal flaw of the specimen and propagates outward. The fatigue lifetime inversion corresponds to the transition of crack initiation and propagation from one mode to the other. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a recently developed laser light-scattering (LLS) procedure, we accomplished the characterization of a broadly distributed unfractionated phenolphthalein poly(aryl ether ketone) (PEK-C) in CHCl3 at 25 degrees C. The laplace inversion of precisely measured intensity-intensity time correlation function from dynamic LLS leads us first to an estimate of the characteristic line-width distribution G(Gamma) and then to the translational diffusion coefficient distribution G(D). By using a previously established calibration of D (cm(2)/s) = 2.37 X 10(-4)M(-0.57), were able to convert G(D) into a differential weight distribution f(w)(M). The weight-average molecular weight M(w) calculated from f(w)(M) agrees well with that directly measured in static LLS. Our results indicate that both the calibration and LLS procedure used in this study are ready to be applied as a routine method for the characterization of the molecular weight distribution of PEK-C. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility and crystallization behaviour of the blends of poly(ether ether ketone) (PEEK) with two thermoplastic polyimides (PI), PEI-E and YS-30, prepared by solution blending were studied by the use of small-angle X-ray scattering (SAXS), differential scanning calorimetry (d.s.c.) and polarizing microscopy techniques. The results obtained show that PEEK/YS-30 is miscible, while PEEK/PEI-E is partially miscible only in the composition range with PEI-E content up to 20 wt%. The crystallization behaviour of PEEK in PEEK/PI blends depends on the crystallization condition of the blend sample as well as the chemical structure and the content of the PI added. Our SAXS results indicate that the segregation of PI molecular chains during crystallization of PEEK chains in the blends is interfibrillar for PEEK/PEI-E blends, but interlamellar for PEEK/YS-30 blends. The compatibility and the crystallization behaviour are discussed in terms of charge transfer interaction between PI and PI molecules and between PI and PEEK molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly(ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12 mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK and more are immiscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two T(g)s were observed for the 50/50 blend of phenoxy with the copolymer containing 17 mol % EEK, whereas a single composition-dependent T-g appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five different molecular weight phenolphthalein poly(aryl ether ketone) (PEK-C) fractions in CHCl3 were studied by static and dynamic laser light scattering(LLS). The dynamic LLS revealed that the PEK-C samples contain some large polymer clusters. These large clusters can be removed by filtering the solution with a 0.1-mu m filter. We found that the persistence length of PEK-C in CHCl3 at 25 degrees C is similar to 2 nm and the Flory characteristic ratio, C-infinity is similar to 25. Our results showed that [R(g)(2)](1/2)(z) = (3.50+/-0.20) x 10(-2)M(w)(0.54+/-0.01) and [D] = (2.37+/-0.05) x 10(-4)M(w)(-0.55+/-0.01), with [R(g)(2)](1/2)(z), M(w), and [D] being the z-average radius of gyration, the weight-average molecular weight, and the z-average translational diffusion coefficient, respectively. A combination of static and dynamic LLS results enabled us to determine D = (2.20+/-0.10) x 10(-4)M(-0.555+/-0.015), where D and M correspond to monodisperse species. Using this calibration between D and M,we have determined molecular weight distributions of five PEK-C fractions from their corresponding translational diffusion coefficient distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastic zone size and crack opening displacement of phenolphthalein polyether ketone (PEK-C) at various conditions were investigated. Both of them increase with increasing temperature (decreasing strain rate), i.e. yield stress steadily falls. Thus, the mechanism increasing the yield stress leads to increased constraint in the crack tip and a corresponding reduction in the crack opening displacement and the plastic deformation zone. The effect of the plastic deformation on the fracture toughness is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures of poly(ether ether ketone ketone)-poly(ether biphenyl ether ketone ketone) copolymers were studied by using small angle X-ray scattering and the one-dimensional electron density correlation function method. The results revealed that structures of the aggregated state of the copolymers depend closely on the biphenyl content (n(b)). When n(b) = 0.35, invariant Q, long period L, average thickness of crystal lamellae (d) over bar, electron density difference eta(c) - eta(a) and degree of crystallinity W-c,W-x assume minimum values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of glass fiber-reinforced phenolphthalein poly(ether ketone)/poly(phenylene sulfide) (PEK-C/PPS) composites have been studied. The morphologies of fracture surfaces were observed by scanning electron microscope. Blending a semicrystalline component, PPS, can improve markedly the mechanical properties of glass fiber-reinforced PEK-C composites. These results can be attributed to the improvement of fiber/matrix interfacial adhesion and higher fiber aspect ratio. (C) 1996 John Wiley & Sons, Inc.