993 resultados para Ism, Atoms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes a comparative study of the electrocrystallization of Ni and Ni-P on Pt ultramicroelectrodes using chronoamperometric measurements. It was possible to confirm that in all cases a progressive nucleation was the predominant mechanism. Moreover, the application of the Atomistic Theory to the experimental rate of nuclei formation showed that the number of atoms in the critical nucleus was zero, except for Ni-P on Pt at low overpotentials were a value of one was observed. Furthermore, the physical characterisation of the different deposits on Pt by atomic force microscopy allowed observing the coalescence of the hemispherical nuclei of Ni and Ni-P at t max thus confirming the results obtained from the current-time analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First-principles scalar relativistic calculations in supercells of 16 atoms are used to represent disordered B2 ordering of Fe(3)Ga in order to observe the effect of Ga-Ga pairs on the electronic structure of this alloy. From a comparison with pure bcc Fe it is observed that the energy position and occupation of e(g) and t(2g) states are largely affected by the Ga-Ga pairs and strengthened intraplane interactions takes place. The results show that a larger hybridization of the conduction band is in the source of the magnetostriction enhancement experimentally observed in Galfenol. (C) 2011 American Institute of Physics. [doi:10.1063/1.3525609]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transport properties and magnetization measurements of the K(x)MoO(2-delta) (0 <= x <= 0.25) compound are reported. The compound crystallizes in the oxygen deficient MoO(2) monoclinic structure with potassium atoms occupying interstitial positions. An unconventional metallic behavior with power-law temperature dependence is related to a magnetic ordering. Superconducting transition with small volume fraction is also observed near 7 K for a sample with low potassium composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title salt, K(+)center dot C(4)H(7)BF(3)O(-), the K atom is surrounded by six anions making close contacts through seven F [K center dot center dot center dot F = 2.779 (1)-3.048 (1) angstrom] and two O [K center dot center dot center dot O = 2.953 (2) and 3.127 (2) angstrom] atoms in a trivacant fac-vIC-9 icosahedral coordination geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Te(IV) atom in the title compound, [Te(C(4)H(9))(C(8)H(10)Br)Cl(2)] or C(12)H(19)BrCl(2)Te, is in a distorted psi-trigonal-bipyramidal geometry, with the lone pair of electrons projected to occupy a position in the equatorial plane, and with the Cl atoms being mutually trans [172.48 (4)degrees]. Close intramolecular [Te center dot center dot center dot Br = 3.3444 (18) angstrom] and intermolecular [Te center dot center dot center dot Cl = 3.675 (3) angstrom] interactions are observed. The latter lead to centrosymmetric dimers which assemble into layers in the bc plane. The primary connections between layers are of the type C-H center dot center dot center dot Cl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pyrrolidine-2,5-dione ring in the title compound, C(15)H(15)NO(6), is in a twisted conformation with the acetyl C atoms projecting to opposite sides of the ring. The acetyl groups lie to opposite sides of the five-membered ring. The benzene ring is roughly perpendicular to the heterocyclic ring, forming a dihedral angle of 76.57 (14)degrees with it. In the crystal, molecules are connected through a network of C-H center dot center dot center dot O and C-H center dot center dot center dot pi interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 1,3-dioxin-4-one ring in the title compound, C(16)H(16)O(3), is in a half-boat conformation with the quaternary O-C(CH(3))(2)-O atom lying 0.546 (1) angstrom out of the plane defined by the remaining five atoms. The crystal structure is consolidated by C-H center dot center dot center dot O contacts that lead to supramolecular layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tetrahydropyrimidinone ring in the title compound, C(20)H(20)N(2)O(2), is in a half-boat conformation with the N-C-N C atom 0.580 (2) angstrom out of the plane defined by the remaining five atoms. In the crystal structure, molecules are connected into centrosymmetric dimers via N-H center dot center dot center dot O interactions. The dimeric aggregates are linked into supramolecular chains along the a axis via C-H center dot center dot center dot pi interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The title compound, K(+)center dot C(8)H(13)BF(3)O(2)(-)center dot H(2)O, which was obtained from the reaction of a modified form of Z-vinylic telluride via a transmetalation reaction with n-BuLi, crystallizes as K(+) and C(8)H(13)BF(3)O(2)-ions along with a water molecule. The K(+) cation is surrounded by four anions, making close contacts with six F atoms at 2.659 (3)-2.906 (3) angstrom and with two O atoms at 2.806 (3) and 2.921 (3) angstrom in a distorted bicapped trigonal-prismatic geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical communication is of fundamental importance to maintain the integration of insect colonies. In honey bees, cuticular lipids differ in their composition between queens, workers and drones. Little is known, however, about cuticular hydrocarbons in stingless bees. We investigated chemical differences in cuticular hydrocarbons between different colonies, castes and individuals of different ages in Schwarziana quadripunctata. The epicuticle of the bees was extracted using the nonpolar solvent hexane, and was analyzed by means of a gas chromatograph coupled with a mass spectrometer. The identified compounds were alkanes, branched-alkanes and alkenes with chains of 19 to 33 carbon atoms. Discriminant analyses showed clear differences between all the groups analyzed. There were significant differences between bees from different colonies, workers of different age and between workers and virgin queens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the scanning tunneling microscopy (STM) signatures for the O/Cu(3)Au(100) surface from the low-coverage (isolated impurity) to high-coverage (oxide) regimes. First-principles calculations show that oxygen signatures switch from dark to bright spots as the oxygen coverage increases. This behavior is nicely traced back to a change in the oxygen orbital character of the Fermi-level electronic states. Our results allow for the chemical identification by STM of oxygen and copper atoms in the fully ordered O/Cu(3)Au(100)-c(2x2) surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Our understanding of the chemical evolution (CE) of the Galactic bulge requires the determination of abundances in large samples of giant stars and planetary nebulae (PNe). Studies based on high resolution spectroscopy of giant stars in several fields of the Galactic bulge obtained with very large telescopes have allowed important progress. Aims. We discuss PNe abundances in the Galactic bulge and compare these results with those presented in the literature for giant stars. Methods. We present the largest, high-quality data-set available for PNe in the direction of the Galactic bulge (inner-disk/bulge). For comparison purposes, we also consider a sample of PNe in the Large Magellanic Cloud (LMC). We derive the element abundances in a consistent way for all the PNe studied. By comparing the abundances for the bulge, inner-disk, and LMC, we identify elements that have not been modified during the evolution of the PN progenitor and can be used to trace the bulge chemical enrichment history. We then compare the PN abundances with abundances of bulge field giant. Results. At the metallicity of the bulge, we find that the abundances of O and Ne are close to the values for the interstellar medium at the time of the PN progenitor formation, and hence these elements can be used as tracers of the bulge CE, in the same way as S and Ar, which are not expected to be affected by nucleosynthetic processes during the evolution of the PN progenitors. The PN oxygen abundance distribution is shifted to lower values by 0.3 dex with respect to the distribution given by giants. A similar shift appears to occur for Ne and S. We discuss possible reasons for this PNe-giant discrepancy and conclude that this is probably due to systematic errors in the abundance derivations in either giants or PNe (or both). We issue an important warning concerning the use of absolute abundances in CE studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The analysis and interpretation of the H(2) line emission from planetary nebulae have been done in the literature by assuming that the molecule survives only in regions where the hydrogen is neutral, as in photodissociation, neutral clumps, or shocked regions. However, there is strong observational and theoretical evidence that at least part of the H(2) emission is produced inside the ionized region of these objects. Aims. The aim of the present work is to calculate and analyze the infrared line emission of H(2) produced inside the ionized region of planetary nebulae using a one-dimensional photoionization code. Methods. The photoionization code Aangaba was improved in order to calculate the statistical population of the H(2) energy levels, as well as the intensity of the H(2) infrared emission lines in the physical conditions typical of planetary nebulae. A grid of models was obtained and the results then analyzed and compared with the observational data. Results. We show that the contribution of the ionized region to the H(2) line emission can be important, particularly in the case of nebulae with high-temperature central stars. This result explains why H(2) emission is more frequently observed in bipolar planetary nebulae (Gatley's rule), since this kind of object typically has hotter stars. Collisional excitation plays an important role in populating the rovibrational levels of the electronic ground state of H(2) molecules. Radiative mechanisms are also important, particularly for the upper vibrational levels. Formation pumping can have minor effects on the line intensities produced by de-excitation from very high rotational levels, especially in dense and dusty environments. We included the effect of the H(2) molecule on the thermal equilibrium of the gas, concluding that, in the ionized region, H(2) only contributes to the thermal equilibrium in the case of a very high temperature of the central star or a high dust-to-gas ratio, mainly through collisional de-excitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Precise S abundances are important in the study of the early chemical evolution of the Galaxy. In particular the site of the formation remains uncertain because, at low metallicity, the trend of this alpha-element versus [Fe/H] remains unclear. Moreover, although sulfur is not bound significantly in dust grains in the ISM, it seems to behave differently in DLAs and old metal-poor stars. Aims. We attempt a precise measurement of the S abundance in a sample of extremely metal-poor stars observed with the ESO VLT equipped with UVES, taking into account NLTE and 3D effects. Methods. The NLTE profiles of the lines of multiplet 1 of S I were computed with a version of the program MULTI, including opacity sources from ATLAS9 and based on a new model atom for S. These profiles were fitted to the observed spectra. Results. We find that sulfur in EMP stars behaves like the other alpha-elements, with [S/Fe] remaining approximately constant below [Fe/H] = -3. However, [S/Mg] seems to decrease slightly with increasing [Mg/H]. The overall abundance patterns of O, Na, Mg, Al, S, and K are most closely matched by the SN model yields by Heger & Woosley. The [S/Zn] ratio in EMP stars is solar, as also found in DLAs. We derive an upper limit to the sulfur abundance [S/Fe] < +0.5 for the ultra metal-poor star CS 22949-037. This, along with a previously reported measurement of zinc, argues against the conjecture that the light-element abundance pattern of this star (and by analogy, the hyper iron-poor stars HE 0107-5240 and HE 1327-2326) would be due to dust depletion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The chemical composition of extremely metal-poor stars (EMP stars; [Fe/H] < similar to -3) is a unique tracer of early nucleosynthesis in the Galaxy. As such stars are rare, we wish to find classes of luminous stars which can be studied at high spectral resolution. Aims. We aim to determine the detailed chemical composition of the two EMP stars CS 30317-056 and CS 22881-039, originally thought to be red horizontal-branch (RHB) stars, and compare it to earlier results for EMP stars as well as to nucleosynthesis yields from various supernova (SN) models. In the analysis, we discovered that our targets are in fact the two most metal-poor RR Lyrae stars known. Methods. Our detailed abundance analysis, taking into account the variability of the stars, is based on VLT/UVES spectra (R similar or equal to 43 000) and 1D LTE OSMARCS model atmospheres and synthetic spectra. For comparison with SN models we also estimate NLTE corrections for a number of elements. Results. We derive LTE abundances for the 16 elements O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba, in good agreement with earlier values for EMP dwarf, giant and RHB stars. Li and C are not detected in either star. NLTE abundance corrections are newly calculated for O and Mg and taken from the literature for other elements. The resulting abundance pattern is best matched by model yields for supernova explosions with high energy and/or significant asphericity effects. Conclusions. Our results indicate that, except for Li and C, the surface composition of EMP RR Lyr stars is not significantly affected by mass loss, mixing or diffusion processes; hence, EMP RR Lyr stars should also be useful tracers of the chemical evolution of the early Galactic halo. The observed abundance ratios indicate that these stars were born from an ISM polluted by energetic, massive (25-40 M(circle dot)) and/or aspherical supernovae, but the NLTE corrections for Sc and certain other elements do play a role in the choice of model.