975 resultados para Iron oxide magnetic nanoparticles (MNP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis, characterization and application of aqueous dispersions of superparamagnetic/polymer hybrid nanoparticles and capsules is described. Implementation of the superparamagnetic moiety into the polymer matrix enables a response of the nanomaterials towards an external magnetic field. Application of the external field is used for two main purposes: i) As heat generator, when an alternating magnetic field is applied. ii) As structuring agent to self-assemble superparamagnetic nanoparticles in the external field.rnIn the first part, superparamagnetic nanoparticles were used as heat generators in order to achieve a magnetic field induced release of an active compound from nanocontainers. To achieve such a release in remote-controlled fashion, the encapsulation of superparamagnetic nanoparticles into polymer nanocapsules was combined with the integration of a thermolabile compound into the shell of the nanocontainers. The magnetic nanoparticles acted as generators for heat, which decomposed the thermolabile compound. Pores were created in the degrading shell and an active substance was released.rn Additionally, the self-assembly of polymer nanoparticles, which were labeled with a superparamagnetic moiety as structuring agent, could be demonstrated. A combination of a magnetic field induced self-assembly and a sintering of neighboring particles upon an increase in temperature above the glass transition temperature of the polymer was used to form stable architectures. Various structures with tunable periodicity could be obtained ranging from smooth linear nanofibers to zigzag fibers. Besides solely creating linear architectures, the frugal process additionally allowed the creation of arrangements in analogy to more complex polymer architectures: By the introduction of defined junction points, the generation of branched structures and networks was demonstrated. Additionally, by tailoring the interaction of differently sized particles, the preparation of nanoparticle arrangements in statistical or block copolymer fashion was shown. Moreover, a reversible linear assembly and linkage of the nanoparticles was demonstrated following a lock/unlock mechanism. Therefore, the particles were locked in their linear assembly by a stable iron(III) hydroxamato-complex and unlocked by addition of a reducing agent and formation of a less stable iron(II)-complex.Further, in various projects with collaboration partners, nanoparticles and nanocapsules were labeled with a superparamagnetic moiety for their use as contrast agents in magnetic resonance imaging or as magnetically separable dispersions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Entwicklung eines nichtviralen, effizienten Transfektionsmittels mit einer Kern-Schale-Struktur in der Größenordnung bis 100 nm. Dafür werden magnetische, negativ geladene Eisenoxid-Nanopartikel mittels Thermolyse mit einem Durchmesser von 17 nm synthetisiert und in Wasser überführt. Diese Nanopartikel bilden den Kern des Erbgut-Trägers und werden mittels Layer-by-Layer –Verfahren (LbL) mit geladenen Polymeren, den bioabbaubaren Makromolekülen Poly-L-Lysin und Heparin, beschichtet. Dafür wird zunächst eine geeignete Apparatur aufgebaut. Diese wird zur Herstellung von Kern-Schale-Strukturen mit fünf Polyelektrolytschichten verwendet und liefert Partikel mit einem hydrodynamischen Durchmesser von 58 nm, die bei Abwesenheit von niedermolekularem Salz aggregatfrei sind. Das System wird gegen Salz stabilisiert, indem die letzte Poly-L-Lysin-Schicht mit Polyethylenglycol modifiziert wird. Die so entstandenen Multischalenpartikel zeigen weder im PBS-Puffer noch in humanem Serum Aggregation. Mittels winkelabhängiger dynamischer Lichtstreuung wird die Aggregatbildung kontrolliert, während ζ-Potential-Messungen die Kontrolle der Oberflächenladung erlauben.rnDa siRNA auf Grund ihres negativ geladenen Phosphat-Rückgrats ebenfalls ein Polyelektrolyt ist, wird sie aggregatfrei auf die positiv geladenen PLL-Nanopartikel aufgetragen. Die eingesetzte siRNA ist farbstoffmarkiert, um eine Detektion in vitro zu ermöglichen. Jedoch sind die entstandenen Komplexe mittels Fluoreszenzkorrelations-spektroskopie (FCS) nicht nachweisbar. Auch die Fluoreszenzmarkierung der PEGylierten Außenschale mittels kupferfreier Click-Chemie ist in der FCS nicht sichtbar, sodass eine Fluoreszenzauslöschung der Farbstoffe in den Multischalenpartikeln vermutet wird.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4+ T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4+ T cells, and induce cytokines. The decreased antigen processing and CD4+ T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow is a target organ site involved in multiple diseases including myeloproliferative disorders and hematologic malignancies and metastases from breast and prostate. Most of these diseases are characterized with poor quality of life, and the treatment options are only palliative due to lack of delivery mechanisms for systemically injected drugs which results in dose limitation to protect the healthy hematopoietic cells. Therefore, there is a critical need to develop effective therapeutic strategies that allow for selective delivery of therapeutic payload to the bone marrow. Nanotechnology-based drug delivery systems provide the opportunity to deliver drugs to the target tissue while decreasing exposure to normal tissues. E-selectin is constitutively expressed on the bone marrow vasculature, but almost absent in normal vessels, and therefore, E-selectin targeted drug delivery presents an ideal strategy for the delivery of therapeutic nanoparticles to the bone marrow. The objective of this study was to develop a novel bone marrow targeted multistage vector (MSV) via E-selectin for delivery of therapeutics and imaging agents. To achieve this goal, Firstly, an E-selectin thioaptamer (ESTA) ligand was identified through a two-step screening from a combinatorial thioaptamer library. Next, ESTA-conjugated MSV (ESTA-MSV) were developed and evaluated for their stability and binding to E-selectin expressing endothelial cells. Different types of nanoparticles including liposomes, quantum dots, and iron oxide nanoparticles were loaded into the porous structure of ESTA-MSV. In vivo targeting experiments demonstrated 8-fold higher accumulation of ESTA-MSV in the mouse bone marrow as compared to non-targeted MSV Furthermore, intravenous injection of liposomes loaded ESTA-MSV resulted in a significantly higher accumulation of liposome in the bone marrow space as compared to injection of non-targeted MSV or liposomes alone. Overall this study provides first evidence that E-selectin targeted multistage vector preferentially targets to bone marrow vasculature and delivers larger amounts of nanoparticles. This delivery strategy holds potential for the selective delivery of large amounts of therapeutic payload to the vascular niches in the bone marrow for the treatment of bone marrow associated diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic properties of doleritic and some metamorphic basement rocks underlying Catoche Knoll are studied. Doleritic rocks show a high saturation magnetic moment (2-5 emu/g) compared to metamorphic rocks (0.1-1 emu/g). Magnetic minerals of rocks from this hole show a high stability when heated in vacuo up to 600°C at a fixed rate of heating. Curie temperatures are distributed close to 550°C. These properties differ markedly from those of common submarine basalts observed before. X-ray microprobe analysis techniques were used to determine internal structures of ferromagnetic minerals; in most of ferromagnetic minerals there exist two different types of magnetic phases (i.e., products of high-temperature and low-temperature oxidations). Interpretations on the coexisting, seemingly contradictory, phases can be made based upon present analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt doped magnetite (CoxFe3-xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by SQUID, x-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to <4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the importance of the inversion of seamount magnetic anomalies, particularly to the motion of the Pacific plate, it is important to gain a better understanding of the nature of the magnetic source of these features. Although different in detail, Ninetyeast Ridge is composed of submarine and subaerial igneous rocks that are similar to those found at many seamounts, making it a suitable proxy. We report here on the magnetic petrology of a collection of samples from Ninetyeast Ridge in the Indian Ocean. Our purpose is to determine the relationship between primary petrology, subsequent alteration, and magnetic properties of the recovered rocks. Such information will eventually lead to a more complete understanding of the magnetization of seamounts and presumably improvements in the accuracy of anomaly inversions. Three basement sites were drilled on Ninetyeast Ridge, with recovery of subaerial basalt flows at the first two (Sites 756 and 757) and submarine massive and pillow flows at the final one (Site 758). The three sites were distinctly different. Site 756 was dominated by ilmenite. What titanomagnetite was present had undergone deuteric alteration and secondary hematite was present in many samples. The magnetization was moderate and stable although it yielded a paleolatitude somewhat lower than expected. Site 757 was highly oxidized, presumably while above sea level. It was dominated by primary titanomagnetite, which was deuterically altered. Secondary hematite was common. Magnetization was relatively weak but quite stable. The paleolatitude for all but the lowermost flows was approximately 40° lower than expected. Site 758 was also dominated by primary titanomagnetite. There was relatively little oxidation with most primary titanomagnetite showing no evidence of high-temperature alteration. No secondary hematite was in evidence. This site had the highest magnetization of the three (although somewhat low relative to other seamounts) but was relatively unstable with significant viscous remanence in many samples. Paleolatitude was close to the expected value. It is not possible, at present, to confidently associate these rocks with specific locations in a seamount structure. A possible and highly speculative model would place rocks similar to Site 757 near the top of the edifice, Site 756 lower down but still erupted above sea level, and Site 758 underlying these units, erupted while the seamount was still below sea level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leg 140 of the Ocean Drilling Program deepened Hole 504B to a total depth of 2000.4 m below seafloor (mbsf), making it the deepest hole drilled into ocean crust. Site 504, south of the Costa Rica Rift, is considered the most important in-situ reference section for the structure of shallow ocean crust. We present the results of studies of magnetic mineralogy and magnetic properties of Hole 504B upper crustal rocks recovered during Legs 137 and 140. Results from this sample set are consistent with those discussed in Pariso et al. (this volume) from Legs 111, 137, and 140. Coercivity (Hc) ranges from 5.3 to 27.7 mT (mean 12 mT), coercivity of remanence (HCR) ranges from 13.3 to 50.6 mT (mean 26 mT), and the ratio HCR/HC ranges from 1.6 to 3.19 (mean 2.13). Saturation magnetization (JS) ranges from 0.03 to 5.94 * 10**-6 Am**2, (mean 2.52 * 10**-6 Am**2), saturation remanence (JR) ranges from 0.01 to 0.58 * 10**-6 Am2 (mean 0.37 * 10**-6 Am**2), and the ratio JR/JS ranges from 0.08 to 0.29 (mean 0.16), consistent with pseudo-single-domain behavior. Natural remanent magnetization (NRM) intensity ranges from 0.029 to 7.18 A/m (mean 2.95 A/m), whereas RM10 intensity varies only from 0.006 to 4.8 A/m and has a mean of only 1.02 A/m. Anhysteretic remanent magnetization (ARM) intensity ranges from 0.04 to 6.0 A/m, with a mean of 2.46 A/m, and isothermal remanent magnetization (IRM) intensity ranges from 0.5 to 1683 A/m, with a mean of 430.7 A/m. Volume susceptibility ranges from 0.0003 to 0.043 SI (mean 0.011 SI). In all samples examined, high-temperature oxidation of primary titanomagnetite has produced lamellae or pods of magnetite and ilmenite. Hydrothermal alteration has further altered the minerals in some samples to a mixture of magnetite, ilmenite, titanite, and a high-titanium mineral (either rutile or anatase). Electron microprobe analyses show that magnetite lamellae are enriched in the trivalent oxides Cr2O3, Al2O3, and V2O5, whereas divalent oxides (MnO and MgO) are concentrated in ilmenite lamellae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than 60 basalt samples from two Deep Sea Drilling Project holes on the Costa Rica Rift were studied for magnetic properties and were found to have no properties significantly different from other DSDP basalts. Opaque mineralogical and thermomagnetic properties of these samples, however, to some extent show differences from normal submarine basalts; a new type of thermomagnetic curve and wide range of chemical compositions were recognized. Oxidized samples possibly containing incipient ilmenite exsolution lamellae were reduced and re-equilibrated during heating. The Curie temperatures of the re-equilibrated titanomagnetites are interpreted to be those of the original crystallized phase before oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined study of magnetic parameters of basalt and andesite samples has been carried out in the framework of geological investigations of the Franz Josef Land. This study has included determination of coercivity, saturation magnetization, Curie points, natural remanent magnetization (NRM), and magnetic susceptibility as well as examination of ferromagnetic minerals with a microscope. Data on chemical composition of the rocks have been obtained for all the samples, and radiological ages have been determined for the majority of the rocks. Thermomagnetic curves of the samples have been subdivided into four types depending on composition of ferromagnetic NRM carriers. Data showing multiple changes in the predominant composition of the igneous rocks have been obtained. Each stage of magmatism is characterized by a specific type of the ferromagnetic component in the rocks and, therefore, magnetomineralogical investigations can be used for differentiation and correlation of the igneous rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los nanomateriales han adquirido recientemente un gran interés debido a la gran variedad de aplicaciones que pueden llegar a tener en el ámbito de la biomedicina. Este trabajo recoge las posibilidades tanto diagnósticas como terapéuticas que presentan dos modalidades de nanomateriales: nanopartículas de óxido de hierro y nanopartículas de oro. Para ello, en una primera aproximación se ha llevado a cabo la caracterización de las nanopartículas desde el punto de vista de la biocompatibilidad asociada a su tamaño y al tiempo de contacto o circulación en células y tejidos, ensayada tanto in vitro como in vivo así como la cinética de acumulación de dichas nanopartículas en el organismo vivo. Posteriormente se ha realizado la biofuncionalización de los dos tipos de nanopartículas para reconocer dianas moleculares específicas y poder ser utilizadas en el futuro en dos aplicaciones biomédicas diferentes: diagnóstico de enfermedad de Alzheimer mediante imagen de resonancia magnética y destrucción selectiva de células tumorales mediante hipertermia óptica. ABSTRACT Nanomaterials have recently gained a great interest due to the variety of applications that can have in the field of biomedicine. This work covers both diagnostic and therapeutic possibilities that present two types of nanomaterials: iron oxide nanoparticles and gold nanoparticles. Therefore, in a first approximation it has performed the characterizing of nanoparticles from the standpoint of biocompatibility associated with their size and time of contact or movement in cells and tissues, tested both in vitro and in vivo as well as the kinetics of accumulation of the nanoparticles into the living organism. Subsequently the biofunctionalization of two types of nanoparticles was made to recognize specific molecular targets and can be used in the future in two different biomedical applications: diagnosis of Alzheimer's disease by magnetic resonance imaging and selective destruction of tumor cells by optical hyperthermia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O câncer é uma das maiores causas de mortalidade no Brasil e no mundo, com potencial de crescimento nas próximas décadas. Um tipo de tratamento promissor é a hipertermia magnética, procedimento no qual as células tumorais morrem pelo efeito do calor gerado por partículas magnéticas após a aplicação de campo magnético alternado em frequências adequadas. Tais partículas também são capazes de atuar como agentes de contraste para imageamento por ressonância magnética, um poderoso método de diagnóstico para identificação de células neoplásicas, formando a combinação conhecida como theranostics (terapia e diagnóstico). Neste trabalho foram sintetizadas nanopartículas de óxido de ferro por método de coprecipitação com posterior encapsulação por técnica de nano spray drying, visando sua aplicação no tratamento de câncer por hipertermia e como agente de contraste para imageamento por ressonância magnética. Para a encapsulação foram utilizadas matrizes poliméricas de Maltodextrina com Polissorbato 80, Pluronic F68, Eudragit® S100 e PCL com Pluronic F68, escolhidos com o intuito de formar partículas que dispersem bem em meio aquoso e que consigam atingir alvo tumoral após administração no corpo do paciente. Parâmetros de secagem pelo equipamento Nano Spray Dryer, como temperatura, solvente e concentração de reagentes, foram avaliados. As partículas formadas foram caracterizadas por Microscopia Eletrônica de Varredura, Difração de Raios-X, Análise Termogravimétrica, Espalhamento de Luz Dinâmico, Espectroscopia de Infravermelho, magnetismo quanto a magnetização de saturação e temperatura, citotoxicidade e potencial de aquecimento. Tais procedimentos indicaram que o método de coprecipitação produziu nanopartículas de magnetita de tamanho em torno 20 nm, superparamagnéticas a temperatura ambiente, sem potencial citotóxico. A técnica de nano spray drying foi eficiente para a formação de partículas com tamanho em torno de 1 μm, também superparamagnéticas, biocompatíveis e com propriedades magnéticas adequadas e para aplicações pretendidas. Destaca-se a amostra com Pluronic, OF-10/15-1P, que apresentou magnetização de saturação de 68,7 emu/g e interação específica com células tumorais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed study of the Fe-Ti oxides in four basalt samples-one from each of the four holes drilled into basement on Ocean Drilling Program Leg 115 (Sites 706, 707, 713, and 715) has been performed. Ilmenite is present only in samples from Sites 706 and 715. In the sample from Site 715, Ti-magnetite intergrowths are characteristic of subaerial (?) high-temperature oxy-exsolution; Ti-magnetite in the other three samples has experienced pervasive low-temperature oxidation to Ti-maghemite, as evidenced by the double-humped, irreversible, saturation magnetization vs. temperature (Js/T) curves. The bulk susceptibility of these samples, which are similar in terms of major element chemistry, varies by a factor of ~20 and correlates semiquantitatively with the modal abundance of Fe-Ti spinel, as determined by image analysis with an electron microprobe. The variation in Fe-Ti oxide abundance correlates with average grain size: fine-grained samples contain less Fe-Ti oxide. This prompts the speculation that the crystallization rate may also influence Fe-Ti oxide abundance.