264 resultados para Imidazole.
Resumo:
Diferentes complexos de cobre(II), contendo ligantes do tipo base de Schiff e um grupamento imidazólico, com interesse bioinorgânico, catalítico e como novos materiais, foram preparados na forma de sais perclorato, nitrato ou cloreto e caracterizados através de diferentes técnicas espectroscópicas (UV/Vis, IR, EPR, Raman) e espectrometria de massa Tandem (ESI-MS/MS), além de análise elementar, condutividade molar e medidas de propriedades magnéticas. Alguns destes compostos, obtidos como cristais adequados, tiveram suas estruturas determinadas por cristalografia de raios-X. As espécies di- e polinucleares contendo pontes cloreto, mostraram desdobramentos das hiperfinas nos espectros de EPR, relacionados à presença do equilíbrio com a respectiva espécie mononuclear, devido à labilidade dos íons cloretos, dependendo do contra-íon e do tipo de solvente utilizado. Adicionalmente, em solução alcalina, estes compostos estão em equilíbrio com as correspondentes espécies polinucleares, onde os centros de cobre estão ligados através de um ligante imidazolato. Em meio alcalino, estes compostos polinucleares contendo ponte imidazolato foram também isolados e caracterizados por diferentes técnicas espectroscópicas e magnéticas. Através da variação estrutural e também do ligante-ponte foi possível modular o fenômeno da interação magnética entre os íons de cobre em estruturas correlatas di- e polinucleares. Os respectivos parâmetros magnéticos foram obtidos com ajuste das curvas experimentais de XM vs T, correlacionando-se muito bem com a geometria, ângulos e distâncias de ligação entre os íons, quando comparado com outros complexos similares descritos na literatura. Posteriormente, estudaram-se os fatores relacionados com a reatividade de todas essas espécies como catalisadores na oxidação de substratos de interesse (fenóis e aminas), através da variação do tamanho da cavidade nas estruturas cíclicas ou de variações no ligante coordenado ao redor do íon metálico. Vários deles se mostraram bons miméticos de tirosinases e catecol oxidases. Um novo complexo-modelo da citocromo c oxidase (CcO), utilizando a protoporfirina IX condensada ao quelato N,N,-bis[2-(1,2-metilbenzimidazolil)etil]amino e ao resíduo de glicil-L-histidina, foi sintetizado e caracterizado através de diferentes técnicas espectroscópicas, especialmente EPR. A adição de H2O2 ao sistema completamente oxidado, FeIII/CuII, a -55°C, ou o borbulhamento de oxigênio molecular a uma solução do complexo na sua forma reduzida, FeII/CuI, saturada de CO, resultou na formação de adutos com O2, de baixo spin, estáveis a baixas temperaturas.
Resumo:
Aryl imidazole-1-sulfonates are efficiently cross-coupled with arylboronic acids and potassium aryltrifluoroborates using only 0.5 mol % of oxime palladacycles 1 under aqueous conditions at 110 °C. Under these simple phosphane-free reaction conditions a wide array of biaryl derivatives has been prepared in high yields. This methodology allows in situ phenol sulfonation and one-pot Suzuki arylation as well as the employment of microwave irradiation conditions.
Resumo:
Primary amine-guanidines derived from trans-cyclohexane-1,2-diamines are used as organocatalysts for the enantioselective conjugate addition of isobutyraldehyde to arylated and heteroarylated nitroalkenes. The reaction was performed in the presence of imidazole as the additive in aqueous DMF as the solvent at 0 °C. The corresponding Michael adducts bearing a new stereocenter were obtained in high yields and with enantioselectivities of up to 80%. Theoretical calculations are used to justify the observed sense of the stereoinduction.
Resumo:
The monoguanylation of (1S,2S)- and (1R,2R)-cyclohexane-1,2-diamine affords chiral primary amine-guanidines that are used as chiral organocatalysts in the enantioselective Michael addition of aldehydes, particularly α,α-disubstituted aldehydes, to maleimides. The reaction is carried out in the presence of imidazole, as an additive, in aqueous N,N-dimethylformamide, as the solvent, and affords the corresponding enantioenriched succinimides in high or quantitative yields with enantioselectivities up to 96 % ee. Theoretical calculations (DFT and M06–2X) suggest a different hydrogen-bonding coordination pattern between the maleimide (C=O) and the catalyst (NH groups) is responsible for the enantioinduction switch that is observed when the reaction is carried out using primary amine-guanidines versus primary amine-thioureas as the organocatalysts.
Resumo:
A variety of hydroxy- and amino-functionalized imidazoles were prepared from 1-methyl- and 1-(diethoxymethyl)imidazole by means of isoprene-mediated lithiation followed by reaction with an electrophile. These compounds in combination with palladium acetate were screened as catalyst systems for the Hiyama reaction under fluorine-free conditions using microwave irradiation. The systematic study of the catalytic system showed 1-methyl-2-aminoalkylimidazole derivative L1 to be the best ligand, which was employed under solvent-free conditions with a 1:2 Pd/ligand ratio and TBAB (20 mol-%) as additive. The study has revealed an interaction between the Pd/ligand ratio and the amount of TBAB. The established catalytic system presented a certain degree of robustness, and it has been successfully employed in the coupling of a range of aryl bromides and chlorides with different aryl siloxanes. Furthermore, both reagents were employed in an equimolecular amount, without an excess of organosilane.
Resumo:
Derivatives of L-histidine were investigated as suitable models for the Asp-His couple found in the catalytic triad of serine proteases. A combination of molecular dynamics and IH NMR spectroscopy suggested that the most populous conformations of N-acetyl-L-histidine and the N-acetyl-L-histidine anion were predominated by those in which the carboxylate group was gauche to the imidazole ring overcoming steric and electrostatic repulsion, suggesting there is an interaction between the carboxylate group and the imidazole ring. Kinetic studies, using imidazole, N-acetyl-L-histidine and the N-acetyl-L-histidine anion showed that in a DMSO/H20 9: 1 v/v solution, the N-acetyl-L-histidine anion catalysed the hydrolysis of p-nitrophenyl acetate at a greater rate than using either imidazole or N-acetyl-L-histidine as catalyst. This indicates that the carboxylate group affects the nucleophilicity of the unprotonated imidazole ring. 31P MAS NMR spectroscopy was investigated as a new technique for the study of the template molecule environment within the polymer networks. It was found that it was possible to distinguish between template associated with the polymer and that which was precipitated onto the surface, though it was not possible to distinguish between polymer within imprinted cavities and that which was not. Attempts to study the effect of the carboxylate group/imidazole ring interaction in the imprinted cavity of a molecularly imprinted polymer network were hindered by the method used to follow the reaction. It was found though that in a pH 8.0 buffered solution the presence of imprinted cavities increased the rate of reaction for those polymers derived from L-histidine. Some preliminary investigations into the design and synthesis of an MIP which would catalyse the oxy-Cope rearrangement were carried out but the results were inconclusive.
Resumo:
One of the main problems with the use of synthetic polymers as biomaterials is the invasion of micro-organisms causing infection. A study of the properties of polymeric antibacterial agents, in particular polyhexamethylene biguanide, has revealed that the essential components for the design of a novel polymeric antibacterial are a balance between hydrophilicity and hydrophobicity coupled with sites of cationicity. The effect of cation incorporation on the physical properties of hydrogels has been investigated. Hydrogel systems copolymerised with either N-vinyl imidazole or dimethylaminoethyl methacrylate have been characterised in terms of their water binding, mechanical and surface properties. It has been concluded that the incorporation of these monomers does not adversely affect the properties of such hydrogels and that these materials are potential candidates for further development for use in biomedical applications. It has been reported that hydro gels with ionic character may increase the deposition of biological material onto the hydrogel surface when it is in contact with body fluids. An investigation into the deposition characteristics of hydrogels containing the potentially cationic monomers has been carried out, using specific protein adsorption and in vitro spoilation techniques. The results suggest that at low levels of cationicity, the deposition of positively charged proteins is reduced without adversely affecting the uptake of the other proteins. The gross deposition characteristics were found to be comparable to some commercially available contact lens materials. A preliminary investigation into the development of novel antibacterial polymers has been completed and some novel methods of bacterial inhibition discussed. These methods include development of an hydrogel whose potential application is as a catheter coating.
Resumo:
The in vivo and in vitro characteristics of the I2 binding site were probed using the technique of drug discrimination and receptor autoradiography. Data presented in this thesis indicates the I2 ligand 2-BFI generates a cue in drug discrimination. Further studies indicated agmatine, a proposed endogenous imidazoline ligand, and a number of imidazoline and imidazole analogues of 2-BFI substitute significantly for 2-BFI. In addition to specific I2 ligands the administration of NRl's (noradrenaline reuptake inhibitors), the sympathomimetic d-amphetamine, the α1-adrenoceptor agonist methoxamine, but not the β1 agonist dobutamine or the β2 agonist salbutamol, gave rise to significant levels of substitution for the 2-BFI cue. The administration of the α1-adrenoceptor antagonist WB4101, prior to 2- BFI itself significantly reduced levels of 2-BFI appropriate responding. Administration of the reversible MAO-A inhibitors moclobemide and Ro41-1049, but not the reversible MAO-B inhibitors lazabemide and Ro16-6491, gave rise to potent dose dependent levels of substitution for the 2-BFI cue. Further studies indicated the administration of a number of β-carbolines and the structurally related indole alkaloid ibogaine also gave rise to dose dependent significant levels of substitution. Due to the relationship of indole alkaloids to serotonin the 5-HT releaser fenfluramine and a number of SSRI's (selective serotonin reuptake inhibitor) were also administered and these compounds gave rise to significant partial (20-80% responses to the 2-BFI lever) levels of substitution. The autoradiographical studies reported here indicate [3H]2-BFI labels I2 sites within the rat arcuate nucleus, area postrema, pineal gland, interpeduncular nucleus and subfornical organ. Subsequent experiments confirmed that the drug discrimination dosing schedule significantly increases levels of [3H]2-BFI 12 binding within two of these nuclei. However, levels of [3H]2-BFI specific binding were significantly reduced within four of these nuclei after chronic treatment with the irreversible MAO inhibitors deprenyl and tranylcypromine but not pargyline, which only reduced levels significantly in two. Further autoradiographical studies indicated that the distribution of [3H]2-BFI within the C57/B mouse compares favourably to that within the rat. Comparison of these levels of binding to those from transgenic mice who over-express MAO-B indicates two possibly distinct populations of [3H]2-BFI 12 sites exist in mouse brain. The data presented here indicates the 2-BFI cue is associated with the selective activation of α1-adrenoceptors and possibly 5-HT receptors. 2-BFI trained rats recognise reversible MAO-A but not MAO-B inhibitors. However, data within this thesis indicates the autoradiographical distribution of I2 sites bears a closer resemblance to that of MAO-B not MAO-A and further studies using transgenic mice that over-express MAO-B suggests a non-MAO-B I2 site exists in mouse brain.
Resumo:
The Introduction gives a brief resume' of the biologically important aspects of 5 -aminoimidazole -4 -carbozamide (1) and explores., in-depth, the synthetic routes to this imidazole. All documented reactions of 5 -aninoimidanole-4 -carboxamide are reviewed in detail, with particular emphasis on the preparation and subsequent coupling reactions of 5 –diazo-imidazole-4 -carboxamide (6). A series of thirteen novel amide 5-amino-2-arylazoimidazole-4-carboxamide derivatives (117-129) were prepared by the coupling of aryldiazonium salts with 5-aminoimidazole-4-carboxamide. Chemical modification of these azo-dyes resulted in the preparation of eight previously unknown acyl derivatives (136-143) Interaction of 5-amino-2-arylazoimidazole-4-carboxides with ethyl formate in sodium ethoxide effected pyrimidine ring closure to the novel 8-arylazohypoxanthines (144 and 145). Several reductive techniques were employed in an effort to obtain the elusive 2,5-diaminoimidazole-4-carboxamide (71),a candidate chemotherapeutic agent, from the arylazoiridazoles. No success can be reported although 5-amino-2-(3-aminoindazol-2-yl) imidazole-4-carboxamide (151) was isolated due to a partial reduction and intramolecular cyclisation of 5-amino72-(2-cyanaphenylazo)imidazole-4-carboxamide (122) .Further possible synthetic approaches to the diaminoimidazole are discussed in Chapter 4. An interesting degradation of a known unstable nitrohydrazone is described in Chapter 5.This resulted in formation of 1, 1-bis(pyrazol--3-ylazo)-1-nitroethane (164) instead of the expected cyclisation to a bicyclic tetrazine N-oxide. An improved preparation of 5-diazoinidazole-4-carboxamide has been achieved, and the diazo-azole formed cycloadducts with isocyanates to yield the hitherto unknown imidazo[5,1-d][1,2,3,5]tetrazin-7(6H)-ones. Eleven derivatives (167-177) of this new ring-system were prepared and characterised. Chemical and spectroscopic investigation showed this ring-system to be unstable under certain conditions, and a comparative study of stability within the group has been made. "Retro-cycloaddition" under protic and photolytic conditions was an unexpected property of 6-substituted imidazo[5,1-d][1,2,3,5]tetrazin--7(0)-ones.Selected examples of the imidazotetrazinone ring-system were tested for antitumour activity. The results of biological evaluation are given in Chapter 7, and have culminated in a Patent application by the collaborating body, May and Baker Ltd. One compound,3-carbamoyl-6-(2-chloro-ethyl)imidazo[5,1-d][1,2,3,5jtetrazin-7(6H)-one (175),shows striking anti-tumour activity in rodent test systems.
Resumo:
Temozolomide is an imidazotetrazinone with antineoplastic properties. It is structurally related to dacarbazine. Temozolomide was not metabolized in vitro by liver fractions. Chemical decomposition appears to play an important r^ole in its in vitro and in vivo disposition. In contrast, 3-methylbenzotriazinone, a structural analogue, was metabolized by hepatic microsomes to afford benzotriazinone and a hydrophilic metabolite. The cytotoxicity of temozolomide, dacarbazine, 5-[3-(hydroxy-methyl-3-methyl-triazen-1-yl]imidazole-5-carboxamide (HMMTIC) and 3-monomethyl-(triazen-1-yl)imidazole-4-carboxamide (MTIC) were investigated in TLX5 murine lymphoma cells. Unlike dacarbazine, which was not toxic, MTIC, HMMTIC and temozolomide were cytotoxic in the absence of microsomes. Decarbazine was only cytotoxic in the presence of microsomes. The formation of MTIC from dacarbazine, HMMTIC and temozolomide was determined by reversed phase high performance liquid chromatography in mixtures incubated under conditions identical to those described before. MTIC was generated chemically from temozolomide and HMMTIC metabolically from dacarbazine. Using [14C]temozolomide, it was found that, in mice, the major route of excretion of the drug is via the kidneys. An acidic metabolite (metabolite I) was found in the urine of mice which had received temozolomide but its identity has not been established. 1H NMR, UV and chemical analyses revealed that Metabolite I possesses an intact NNN linkage and the site of metabolism is at the N3 methyl group. A further acidic metabolite (metabolite II) was found in the urine of patients. Metabolite II was unambiguously identified as the 8-carboxylic acid derivative of temozolomide. In vitro cytotoxicity assay showed that ony metabolite II is cytotoxic but not metabolite I. Pharmacokinetic studies of temozolomide and MTIC in vivo were performed on mice bearing TLX5 tumour. Temozolomide was eliminated from the plasma monophasically with a t1/2 of 0.7hr. MTIC was identified as a product of decomposition. MTIC was eliminated rapidly with a t1/2 of 2min. Though temozolomide shares many biochemical and biological similarities with clinically used dacarbazine, the results obtained in this study show that it differs markedly in its pharmacokinetic properties from dacarbazine, as temozolomide produced relatively sustained plasma levels which were reflected by drug concentrations in the tumour.
Resumo:
Established RlNm5F and lN111 R1 and newly available HlT-T15 and UMR 407/3 B-cell lines have been successfully maintained in vitro. With the exclusion of UMR 407/3 cells, all lines were continuously propagable. Doubling times and plating efficiencies for HlT-T15, RlNm5F, lN111 R1 and UMR 407/3 cells were 20 hours and 85%, 31 hours and 76%, 24 hours and 80% and 38 hours and 94% respectively. All the cell lines were anchorage dependent, but only UMR 407/3 cells grew to confluence. Only HlT-T15 and UMR 407/3 cells produced a true insulin response to glucose but glucose markedly increased the rate of D-[U14C]glucose oxidation by all the cell lines. Glucose induced insulin release from HlT-T15 cells was biphasic with an exaggerated first phase. Insulin release from HlT-T15, RlNm5F and IN111 R1 cells was stimulated by amino acids and sulphonylureas. Glucagon stimulated insulin release from HlT-T15 and RlNm5F cells while somatostatin and pancreatic polypeptide inhibited release. These observations suggest that net insulin release from the whole islet may be the result of significant paracrine interaction. HlT-T15 and RlNm5F cell insulin release was stimulated by forskolin and inhibited by imidazole. Ca2+ channel blockade and calmodulin inhibition suppressed insulin release from HlT-T15, RlNm5F and IN111 R1 cells. In addition phorbol esters stimulated insulin release from RlNm5F cells. These data implicate cAMP, Ca2+ and protein kinase-C in the regulation of insulin release from cultured B-cells. Acetylcholine increased insulin release from HlT-T15 and RlNm5F cells. Inhibition of the response by atropine confirmed the involvement of muscarinic receptors. HlT-T15 cell insulin release was also inhibited by adrenaline. These observations suggest a possible role for the autonomic nervous system in the modulation of insulin release. Preliminary studies with a human insulinoma maintained in monolayer culture have demonstrated a limited life span of some seven weeks, a continuous low level of insulin release but no insulin response to glucose challenge.
Resumo:
Reactive oxygen species including H2O2 activate an array of intracellular signalling cascades that are closely associated with cell death and cell survival pathways. The human neuroblastoma SH-SY5Y cell line is widely used as model cell system for studying neuronal cell death induced by oxidative stress. However, at present very little is known about the signalling pathways activated by H2O2 in SH-SY5Y cells. Therefore, in this study we have investigated the effect of H2(O2 on extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase B (PKB) activation in undifferentiated and differentiated SH-SY5Y cells. H2O2 stimulated time and concentration increases in ERK1/2, JNK and PKB phosphorylation in undifferentiated and differentiated SH-SY5Y cells. No increases in p38 MAPK phosphorylation were observed following H2O2 treatment. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin and LY 294002 ((2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) inhibited H2O2-induced increases in ERK1/2 and PKB phosphorylation. Furthermore, H2O2-mediated increases in ERK1/2 activation were sensitive to the MAPK kinase 1 (MEK1) inhibitor PD 98059 (2'-amino-3'-methoxyflavone), whereas JNK responses were blocked by the JNK inhibitor SP 600125 (anthra[1-9-cd]pyrazol-6(2H)-one). Treatment of SH-SY5Y cells with H2O2 (1 mM; 16 h) significantly increased the release of lactate dehydrogenase (LDH) into the culture medium indicative of a decrease in cell viability. Pre-treatment with wortmannin, SP 600125 or SB 203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole; p38 MAPK inhibitor) had no effect on H2O2-induced LDH release from undifferentiated or differentiated SH-SY5Y cells. In contrast, PD 98059 and LY 294002 significantly decreased H2O2-induced cell death in both undifferentiated and differentiated SH-SY5Y cells. In conclusion, we have shown that H2O2 stimulates robust increases in ERK1/2, JNK and PKB in undifferentiated and differentiated SH-SY5Y cells. Furthermore, the data presented clearly suggest that inhibition of the ERK1/2 pathway protects SH-SY5Y cells from H2O2-induced cell death.
Resumo:
Background: HLA-DPs are class II MHC proteins mediating immune responses to many diseases. Peptides bind MHC class II proteins in the acidic environment within endosomes. Acidic pH markedly elevates association rate constants but dissociation rates are almost unchanged in the pH range 5.0 - 7.0. This pH-driven effect can be explained by the protonation/deprotonation states of Histidine, whose imidazole has a pKa of 6.0. At pH 5.0, imidazole ring is protonated, making Histidine positively charged and very hydrophilic, while at pH 7.0 imidazole is unprotonated, making Histidine less hydrophilic. We develop here a method to predict peptide binding to the four most frequent HLA-DP proteins: DP1, DP41, DP42 and DP5, using a molecular docking protocol. Dockings to virtual combinatorial peptide libraries were performed at pH 5.0 and pH 7.0. Results: The X-ray structure of the peptide - HLA-DP2 protein complex was used as a starting template to model by homology the structure of the four DP proteins. The resulting models were used to produce virtual combinatorial peptide libraries constructed using the single amino acid substitution (SAAS) principle. Peptides were docked into the DP binding site using AutoDock at pH 5.0 and pH 7.0. The resulting scores were normalized and used to generate Docking Score-based Quantitative Matrices (DS-QMs). The predictive ability of these QMs was tested using an external test set of 484 known DP binders. They were also compared to existing servers for DP binding prediction. The models derived at pH 5.0 predict better than those derived at pH 7.0 and showed significantly improved predictions for three of the four DP proteins, when compared to the existing servers. They are able to recognize 50% of the known binders in the top 5% of predicted peptides. Conclusions: The higher predictive ability of DS-QMs derived at pH 5.0 may be rationalised by the additional hydrogen bond formed between the backbone carbonyl oxygen belonging to the peptide position before p1 (p-1) and the protonated ε-nitrogen of His 79β. Additionally, protonated His residues are well accepted at most of the peptide binding core positions which is in a good agreement with the overall negatively charged peptide binding site of most MHC proteins. © 2012 Patronov et al.; licensee BioMed Central Ltd.
Resumo:
The growing interest and applications of biotechnology products have increased the development of new processes for recovery and purification of proteins. The expanded bed adsorption (EBA) has emerged as a promising technique for this purpose. It combines into one operation the steps of clarification, concentration and purification of the target molecule. Hence, the method reduces the time and the cost of operation. In this context, this thesis aim was to evaluate the recovery and purification of 503 antigen of Leishmania i. chagasi expressed in E. coli M15 and endotoxin removal by EBA. In the first step of this study, batch experiments were carried out using two experimental designs to define the optimal adsorption and elution conditions of 503 antigen onto Streamline chelating resin. For adsorption assays, using expanded bed, it was used a column of 2.6 cm in diameter by 30.0 cm in height coupled to a peristaltic pump. In the second step of study, the removal of endotoxin during antigen recovery process was evaluated employing the non-ionic surfactant Triton X-114 in the washing step ALE. In the third step, we sought developing a mathematical model able to predict the 503 antigen breakthrough curves in expanded mode. The experimental design results to adsorption showed the pH 8.0 and the NaCl concentration of 2.4 M as the optimum adsorption condition. In the second design, the only significant factor for elution was the concentration of imidazole, which was taken at 600 mM. The adsorption isotherm of the 503 antigen showed a good fit to the Langmuir model (R = 0.98) and values for qmax (maximum adsorption capacity) and Kd (equilibrium constant) estimated were 1.95 mg/g and 0.34 mg/mL, respectively. Purification tests directly from unclarified feedstock showed a recovery of 59.2% of the target protein and a purification factor of 6.0. The addition of the non-ionic surfactant Triton X-114 to the washing step of EBA led to high levels (> 99%) of LPS removal initially present in the samples for all conditions tested. The mathematical model obtained to describe the 503 antigen breakthrough curves in Streamline Chelanting resin in expanded mode showed a good fit for both parameter estimation and validation steps. The validated model was used to optimize the efficiencies, achieving maximum values of the process and of the column efficiencies of 89.2% and 75.9%, respectively. Therefore, EBA is an efficient alternative for the recovery of the target protein and removal of endotoxin from an E. coli unclarified feedstock in just one step.
Resumo:
This thesis outlines the design and application of new routes towards a range of novel bisindolylmaleimide and indolo[2,3-a]carbazole derivatives, and evaluation of their biological effects and their chemotherapeutic potential. A key part of this work focussed on utilising a hydroxymaleimide as a replacement for the prevalent lactam/maleimide functionality and forming a series of novel derivatives through substitution on the indole nitrogens. To achieve this, a robust synthetic strategy was developed which allowed access to key maleic anhydride intermediates using Perkin-type methodology. These hydroxymaleimides were further modified via a Lossen rearrangement to furnish a series of analogues containing a 6-membered F-ring. The theme of F-ring modulation was further expanded through the utilisation of a second route involving the design and synthesis of β-keto ester intermediates, which afforded novel derivatives containing pyrazolone and isocytosine headgroups, and various N-substituents. Work on a further route involving a dione intermediate resulted in the isolation of a bisindolyl derivative with a novel imidazole F-ring. Following the synthesis of 42 novel compounds, extensive screening was undertaken using the NCI-60 cell line screen, with twelve candidates progressing to evaluation via the five dose assay. This led to the identification of several lead compounds with high cytotoxicity and excellent selectivity profiles, which included derivatives with low nanomolar GI50 values against specific cancer cell lines, and also derivatives with selective cytotoxicity. Preliminary results from a kinase screen indicated noteworthy selectivity towards GSK3α/β and PIM1 kinases, with low micromolar IC50 values being observed for these enzymes.