993 resultados para HUMAN GINGIVAL FIBROBLASTS
Resumo:
Periodontal disease is a chronic inflammation of the attachment structures of the teeth, triggered by potentially hazardous microorganisms and the consequent immune-inflammatory responses. In humans, the T helper type 17 (Th17) lineage, characterized by interleukin-17 (IL-17) production, develops under transforming growth factor-beta (TGF-beta), IL-1 beta, and IL-6 signaling, while its pool is maintained by IL-23. Although this subset of cells has been implicated in various autoimmune, inflammatory, and bone-destructive conditions, the exact role of T lymphocytes in chronic periodontitis is still controversial. Therefore, in this study we investigated the presence of Th17 cells in human periodontal disease. Gingival and alveolar bone samples from healthy patients and patients with chronic periodontitis were collected and used for the subsequent assays. The messenger RNA expression for the cytokines IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 in gingiva or IL-17 and receptor activator for nuclear factor-kappa B ligand in alveolar bone was evaluated by real-time polymerase chain reaction. The production of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 proteins was evaluated by immunohistochemistry and the presence of Th17 cells in the inflamed gingiva was confirmed by immunofluorescence confocal microscopy for CD4 and IL-17 colocalization. Our data demonstrated elevated levels of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 messenger RNA and protein in diseased tissues as well as the presence of Th17 cells in gingiva from patients with periodontitis. Moreover, IL-17 and the bone resorption factor RANKL were abundantly expressed in the alveolar bone of diseased patients, in contrast to low detection in controls. These results provided strong evidence for the presence of Th17 cells in the sites of chronic inflammation in human periodontal disease.
Resumo:
BACKGROUND: Comparative genomic hybridization (CGH) is a valuable alternative to fluorescence in situ hybridization (FISH) for preimplantation genetic screening (PGS) because it allows full karyotype analysis. However, this approach requires the cryopreservation of biopsied embryos until results are available. The aim of this study is to reduce the hybridization period of CGH, in order to make this short-CGH technique suitable for PGS of Day-3 embryos, avoiding the cryopreservation step. METHODS: Thirty-two fibroblasts from six aneuploid cell lines (Coriell) and 48 blastomeres from 10 Day-4 embryos, discarded after PGS by FISH with 9 probes (9-chr-FISH), were analysed by short-CGH. A reanalysis by the standard 72 h-CGH and FISH using telomeric probes was performed when no concordant results between short-CGH and FISH diagnosis were observed. The short-CGH was subsequently applied in a clinical case of advanced maternal age. RESULTS: In 100% of the fibroblasts analysed, the characteristic aneuploidies of each cell line were detected by short-CGH. The results of the 48 blastomeres screened by short-CGH were supported by both 72 h-CGH results and FISH reanalysis. The chromosomes most frequently involved in aneuploidy were 22 and 16, but aneuploidies for the other chromosomes, excepting 1, 10 and 13, were also detected. Forty-one of the 94 aneuploid events observed (43.6%) corresponded to chromosomes which are not analysed by 9-chr-FISH. CONCLUSIONS: We have performed a preliminary validation of the short-CGH technique, including one clinical case, suggesting this approach may be applied to Day-3 aneuploidy analysis, thereby avoiding embryo cryopreservation and perhaps helping to improve implantation rate after PGS.
Resumo:
Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher`s disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.
Resumo:
In this study, we aimed at determining whether human immature dental pulp stem cells (hIDPSC) would be able to contribute to different cell types in mouse blastocysts without damaging them. Also, we analysed whether these blastocysts would progress further into embryogenesis when implanted to the uterus of foster mice, and develop human/mouse chimaera with retention of hIDPSC derivates and their differentiation. hIDPSC and mouse blastocysts were used in this study. Fluorescence staining of hIDPSC and injection into mouse blastocysts, was performed. Histology, immunohistochemistry, fluorescence in situ hybridization and confocal microscopy were carried out. hIDPSC showed biological compatibility with the mouse host environment and could survive, proliferate and contribute to the inner cell mass as well as to the trophoblast cell layer after introduction into early mouse embryos (n = 28), which achieved the hatching stage following 24 and 48 h in culture. When transferred to foster mice (n = 5), these blastocysts with hIDPSC (n = 57) yielded embryos (n = 3) and foetuses (n = 6); demonstrating presence of human cells in various organs, such as brain, liver, intestine and hearts, of the human/mouse chimaeras. We verified whether hIDPSC would also be able to differentiate into specific cell types in the mouse environment. Contribution of hIDPSC in at least two types of tissues (muscles and epithelial), was confirmed. We showed that hIDPSC survived, proliferated and differentiated in mouse developing blastocysts and were capable of producing human/mouse chimaeras.
Resumo:
Periodontitis is an infectious disease, where putative periodontopathogens trigger chronic inflammatory and immune responses against periodontal structures, in which an unbalanced host response is also determinant to the disease outcome. It is reasonable to assume that patient susceptibility to periodontal tissue destruction could be determined by the balance between the response against periodontopathogens and regulatory mechanisms of these events mediated by suppressive T cells. In the present study, we identified and characterized natural regulatory T cells ( Tregs) in the inflammatory infiltrate of human chronic periodontitis ( CP) with emphasis on phenotypic analyses that were carried out to address the participation of Tregs in CP. Results showed that patients with CP presented increased frequency of T lymphocytes and CD4(+)CD25(+) T cells in the inflammatory infiltrate of gingival tissues. These cells exhibited the phenotypic markers of Tregs such as forkhead box p3 ( Foxp3), CTLA- 4, glucocorticoidinducible TNFR, CD103, and CD45RO and seemed to be attracted to the inflammation site by the chemokines CCL17 and CCL22, as their expression and its receptor CCR4 were increased in CP patients. Moreover, besides the increased detection of Foxp3 mRNA, diseased tissues presented high expression of the regulatory cytokines IL-10 and TGF-beta. In addition, the inflammatory infiltrate in CP biopsies was composed of CD25(+)Foxp3(+) and CD25(+)TGF-beta(+) cells, thus corroborating the hypothesis of the involvement of Tregs in the pathogenesis of CP. Finally, these results indicate that Tregs are found in the chronic lesions and must be involved in the modulation of local immune response in CP patients.
Resumo:
An immunoperoxidase technique was used to examine IP-10 (interferon-gamma inducible protein 10), RANTES (regulated on activation normal T cell expressed and secreted), MCP-1 (monocyte chemoattractant protein-1), and MIP-1alpha (macrophage inflammatory protein-1alpha) in gingival biopsies from 21 healthy/gingivitis and 26 periodontitis subjects. The samples were placed into 3 groups according to the size of infiltrate. MIP-1alpha+ cells were more abundant than the other chemokines with few MCP-1+ cells. The mean percent MIP-1alpha+ cells was higher than the percent MCP-1+ cells (P = 0.02) in group 2 (intermediate size infiltrates) lesions from periodontitis subjects, other differences not being significant due to the large variations between tissue samples. Analysis of positive cells in relation to CD4/CD8 ratios showed that with an increased proportion of CD8+ cells, the mean percent MIP-1alpha+ cells was significantly higher in comparison with the mean percent RANTES+ and MCP-1+ cells (P < 0.015). Endothelial cells were MCP-1+ although positive capillaries were found on the periphery of infiltrates only. Keratinocyte expression of chemokines was weak and while the numbers of healthy/gingivitis and periodontitis tissue sections positive for IP-10, RANTES and MCP-1 reduced with increasing inflammation, those positive for MIP-1alpha remained constant for all groups. In conclusion, fewer leucocytes expressed MCP-1 in gingival tissue sections, however, the percent MIP-1alpha+ cells was increased particularly in tissues with increased proportions of CD8 cells and B cells with increasing inflammation and also in tissues with higher numbers of macrophages with little inflammation. Further studies are required to determine the significance of MIP-1alpha in periodontal disease.
Resumo:
An immunoperoxidase technique was used to examine CD28, CD152, CD80 and CD86 positive cells in gingival biopsies from 21 healthy/gingivitis and 26 periodontitis subjects. The samples were placed into 3 groups (small, intermediate, large) according to the size of the infiltrate. The percent CD28+ T cells in the connective tissue infiltrates was highly variable with no differences between the healthy/gingivitis and periodontitis groups. While there was an increase in positive cells in intermediate infiltrates from both healthy/gingivitis (28.5%) and periodontitis (21.4%) patients compared with small infiltrates (8.6% and 11.8%, respectively), this was not significant, although the percent CD28+ T cells did increase significantly in tissues with increased proportions of B cells relative to T cells (p=0.047). A mean of less than 5% infiltrating T cells were CD152+ which was significantly lower than the mean percent CD28+ T cells in intermediate healthy/gingivitis lesions (p=0.021). The mean percent CD80+ and CD86+ B cells and macrophages was 1–7% and 8–16%, respectively, the difference being significant in intermediate healthy/gingivitis tissues (p=0.012). Analysis of these cells in relation to increasing numbers of B cells in proportion to T cells and also to macrophages, suggested that CD80 was expressed predominantly by macrophages while CD86 was expressed by both macrophages and B cells. Few endothelial cells expressed CD80 or CD86. Keratinocytes displayed cytoplasmic staining of CD80 rather than CD86 although the numbers of positive specimens in the healthy/gingivitis and periodontitis groups reduced with increasing inflammation. In conclusion, percentages of CD28, CD152, CD80 and CD86 did not reflect differences in clinical status. However, the percent CD28+ T cells increased with increasing size of infiltrate and with increasing proportions of B cells suggesting increased T/B cell interactions with increasing inflammation. The percent CD152+ cells remained low indicating that CD152 may not be involved in negative regulation of T cells in periodontal disease. CD80 and CD86 have been reported to promote Th1 and Th2 responses, respectively, and the higher percent CD86+ cells suggests a predominance of Th2 responses in both healthy/gingivitis and periodontitis tissues. Nevertheless, other factors including cytokines themselves and chemokines which modulate T cell cytokine profiles must be monitored to determine the nature of Th1/Th2 responses in periodontal disease.
Gingival crevicular fluid levels of MMP-8, MMP-9, TIMP-2, and MPO decrease after periodontal therapy
Resumo:
P>Background This study aimed at comparing the levels of matrix metalloproteinase (MMP)-8, tissue Inhibitor of MMPs (TIMP)-1 and TIMP-2, Myeloperoxidase (MPO), and MMP-9 in the gingival crevicular fluid (GCF) of chronic periodontitis (CP) patients and controls at baseline and 3 months after non-surgical therapy. Materials and Methods GCF was collected from one site of 15 control subjects and 27 CP patients. MMP-8, MMP-9, TIMP-1, and TIMP-2 were determined by Enzyme-linked immunoabsorbent assay; different forms of MMP-9, by gelatin zymography; and MPO, colorimetrically. Results At baseline, higher levels of MMP-8, TIMP-2, MPO, and the 87 kDa-MMP-9 were found in patients compared with controls (p < 0.001), and these molecules decreased after therapy (p < 0.03). There were no differences between the groups with respect to the higher molecular forms of MMP-9 (180, 130, 92 kDa) or total MMP-9 at baseline. No differences were observed in TIMP-1 levels. In controls, decreased levels of TIMP-2 and the higher molecular forms of MMP-9 (180, 130, 92 kDa) were found 3 months after therapy compared with baseline (p < 0.01). Conclusions Higher levels of MMP-8, TIMP-2, MPO, and 87 kDa MMP-9 were found in the GCF of patients compared with controls, and these markers decreased 3 months after periodontal therapy.
Resumo:
Estrogen influences regional adipose tissue distribution and the accompanying cardiovascular disease risk. To elucidate the mechanisms of this link further, we assessed whether human preadipocytes (PAs) expressed estrogen receptors (ERs) and whether there were any regional or gender differences in ER complement. Human PAs expressed the ER alpha gene but not ERP by reverse transcriptase-polymerase chain reaction, possessed ER alpha protein on Western blotting, and displayed specific 17 beta -estradiol (E-2) binding with calculated dissociation constants of 0.78 nM, 0.96 nM, and 1.19 nM and maximal binding capacities of 9.3 fmol/mg, 14.6 fmol/ mg, and 18.2 fmol/mg from three whole cell binding assays. There were no regional differences in ER alpha complement for males or females. There were no gender differences in ER alpha complement for subcutaneous or visceral samples. We conclude that ER alpha but not ERP is present in human PAs. This suggests that the effect of estrogen on adipose tissue deposition has a contribution from the direct effect of estrogen on human PAs via ER alpha.
Resumo:
T cells are present in the inflammatory infiltrates of periodontal disease lesions and require antigen presentation by antigen-presenting cells (APCs). While it is still not known whether Th1 or Th2 cells predominate in these lesions, it has been reported that different APCs may induce activation of different T-cell subsets. An immunoperoxidase technique was used to investigate the presence of CD1a+, CMRF-44+, CMRF-58+ and CD83+ dendritic cells, CD14+ macrophages or dendritic cell precursors and CD19+ B cells in gingival biopsies from 21 healthy or gingivitis and 25 periodontitis subjects. The samples were divided into three groups according to the size of infiltrate (group 1, small infiltrates; group 2, medium infiltrates; group 3, extensive infiltrates). The presence of numerous CD1a+ Langerhans cells was noted in the epithelium with no differences between the healthy/gingivitis and periodontitis groups. The percentage of CD83+ dendritic cells in the infiltrates was higher than the percentage of CD1a+, CMRF-44+ or CMRF-58+ dendritic cells. Endothelial cells positive for CD83 were found predominantly in areas adjacent to infiltrating cells, CD83+ dendritic cells being noted in the region of CD83+ endothelium. The percentage of CD14+ cells in the inflammatory infiltrates was similar to that of CD83+ dendritic cells. B cells were the predominant APC in group 2 and 3 tissues. The percentage of B cells in group 3 periodontitis lesions was increased in comparison with group 1 periodontitis tissues and also in comparison with group 3 healthy/gingivitis sections. Functional studies are required to determine the roles of different APC subpopulations in periodontal disease.
Resumo:
Androgens play an important role in regulating the central obesity that is a strong risk factor for cardiovascular disease and insulin resistance. This study confirms that androgen receptors are present in subcultured human preadipocytes, with androgen receptor gene expression and saturable specific dihydrotestosterone binding, dissociation constant 1.02 - 2.56 nM and maximal binding capacity 30.8 - 55.7 fmol/mg protein. There was an intrinsic regional difference in androgen receptor complement, with more androgen receptors in visceral than in subcutaneous preadipocytes. Dihydrotestosterone was metabolised by human preadipocytes, with more androstanediol produced by subcutaneous than visceral preadipocytes. While dihydrotestosterone metabolism was insufficient to explain the regional variation in androgen binding, both of these differences would reduce the androgen responsiveness of the subcutaneous preadipocytes compared with visceral preadipocytes. There were no gender differences in androgen binding or metabolism. While the direct effects of androgens on human PAS remain uncertain, these regional differences suggest that AR-mediated regulation of certain PA functions influences adipose tissue distribution.
Resumo:
A família de proteínas Shank é o principal conjunto de proteinas de suporte e está localizada na densidade pós-sináptica das sinapses excitatórias. Existem 3 genes na família Shank, Shank1, Shank2 e Shank3 e são caracterizados por múltiplos domínios repetidos de anquirina próximo ao N-terminal seguido pelos domínios Src homologo 3 e PDZ, uma região longa rica em prolina e um domínio de motivo α estéril próximo ao C-terminal. Shank proteínas conectam duas subunidades de receptors glutamatérgicos, recetores NMDA e recetores metabotrópicos de glutamato do tipo-I (mGluRs). O domínio PDZ da Shank conecta-se ao C-terminal do GKAP e este, liga-se, ao complexo recetor PSD-95-NMDA. Por outro lado, a proteína Homer interage com o domínio rico em prolina para confirmar a associação entre a proteína Shank com o mGluR tipo-I. A proteína específica em estudo, Shank3, é haploinsuficiente em pacientes com sindrome Phelan-McDermid devido à deleções no braço comprido do cromossoma 22 levando à danos intelectuais, ausência ou atraso no discurso, comportamentos semelhantes ao autismo, hipotonia e características dismórficas. Neste trabalho, investigamos o papel da Shank3 na função sináptica para compreender a relação entre alterações nesta proteína e as características neurológicas presente em Pacientes com síndrome Phelan-McDermid. Foram utilizados dois modelos diferentes, ratinhos knockout Shank3 e hiPSC de pacientes com PMS. Ratinhos geneticamente modificados são ferramentas uteis no estudo de genes e na compreensão dos mecanismos que experiências in vitro não são capazes de reproduzir, mas de maneira a compreender melhor as patologias humanas, decidimos trabalhar também com células humanas. Os fibroblastos dos pacientes com síndrome Phelan-McDermid fora reprogramados em hiPS cells, diferenciados em neurónios e comparados com os neurónios obtidos a partir de doadores saudavéis e da mesma idade. A reprogramação em iPSC foi realizada por infecção de lentivirus com quatro genes de reprogramação OCT4, c-MYC, SOX2 e KFL4 para posteriormente serem diferenciados em neurónios, com cada passo sendo positivamente confirmado através de marcadores neuronais. Através dos neurónios diferenciados, analisamos a expressão de proteínas sinápticas. Pacientes com haploinsuficiencia na proteína Shank3 apresentam níveis elevados de proteína mGluR5 e decrescidos de proteína Homer sugerindo que a haploinsuficiencia leva a desregulação do complexo mGluR5-Homer-Shank3 conduzindo também, a defeitos na maturação sináptica. Assim, a expressão da proteína mGluR5 está alterada nos pacientes com PMS podendo estar relacionada com defeitos encontrados na diferenciação neuronal e maturação sináptica observados nos neurónios de pacientes. Conclusivamente, iPS cells representam um modelo fundamental no estudo da proteína Shank3 e a sua influência no sindrome de Phelan-McDermid.
Resumo:
The cyanobacteria are known to be a rich source of metabolites with a variety of biological activities in different biological systems. In the present work, the bioactivity of aqueous and organic (methanolic and hexane) crude extracts of cyanobacteria isolated from estuarine ecosystems was studied using different bioassays. The assessment of DNA damage on the SOS gene repair region of mutant PQ37 strain of Escherichia coli was performed. Antiviral activity was evaluated against influenza virus, HRV-2, CVB3 and HSV-1 viruses using crystal violet dye uptake on HeLa, MDCK and GMK cell lines. Cytotoxicity evaluation was performed with L929 fibroblasts by MTT assay. Of a total of 18 cyanobacterial isolates studied, only the crude methanolic extract of LEGE 06078 proved to be genotoxic (IF > 1.5) in a dose-dependent manner and other four were putative candidates to induce DNA damage. Furthermore, the crude aqueous extract of LEGE 07085 showed anti- herpes type 1 activity (IC50 = 174.10 μg dry extract mL−1) while not presenting any cytotoxic activity against GMK cell lines. Of the 54 cyanobacterial extracts tested, only the crude methanolic and hexane ones showed impair on metabolic activity of L929 fibroblasts after long exposure (48–72 h). The inhibition of HSV-1 and the strong cytotoxicity against L929 cells observed emphasizes the importance of evaluating the impact of those estuarine cyanobacteria on aquatic ecosystem and on human health. The data also point out their potential application in HSV-1 treatment and pharmacological interest.
Resumo:
Although a variety of nanoparticles (NPs) functionalized with amphotericin B, an antifungal agent widely used in the clinic, have been studied in the last years their cytotoxicity profile remains elusive. Here we show that human endothelial cells take up high amounts of silica nanoparticles (SNPs) conjugated with amphotericin B (AmB) (SNP-AmB) (65.4 12.4 pg of Si per cell) through macropinocytosis while human fibroblasts internalize relatively low amounts (2.3 0.4 pg of Si per cell) because of their low capacity for macropinocytosis. We further show that concentrations of SNP-AmB and SNP up to 400 mg/mL do not substantially affect fibroblasts. In contrast, endothelial cells are sensitive to low concentrations of NPs (above 10 mg/mL), in particular to SNP-AmB. This is because of their capacity to internalize high concentration of NPs and high sensitivity of their membrane to the effects of AmB. Low-moderate concentrations of SNP-AmB (up to 100 mg/mL) induce the production of reactive oxygen species (ROS), LDH release, high expression of pro-inflammatory cytokines and chemokines (IL-8, IL-6, G-CSF, CCL4, IL-1b and CSF2) and high expression of heat shock proteins (HSPs) at gene and protein levels. High concentrations of SNP-AmB (above 100 ug/mL) disturb membrane integrity and kill rapidly human cells(60% after 5 h). This effect is higher in SNP-AmB than in SNP.
Resumo:
We have previously reported (Dobreva, I., Waeber, G., Mooser, V., James, R. W., and Widmann, C. (2003) J. Lipid Res. 44, 2382-2390) that low density lipoproteins (LDLs) induce activation of the p38 MAPK pathway, resulting in fibroblast spreading and lamellipodia formation. Here, we show that LDL-stimulated fibroblast spreading and wound sealing are due to secretion of a soluble factor. Using an antibody-based human protein array, interleukin-8 (IL-8) was identified as the main cytokine whose concentration was increased in supernatants from LDL-stimulated cells. Incubation of supernatants from LDL-treated cells with an anti-IL-8 blocking antibody completely abolished their ability to induce cell spreading and mediate wound closure. In addition, fibroblasts treated with recombinant IL-8 spread to the same extent as cells incubated with LDL or supernatants from LDL-treated cells. The ability of LDL and IL-8 to induce fibroblast spreading was mediated by the IL-8 receptor type II (CXCR-2). Furthermore, LDL-induced IL-8 production and subsequent wound closure required the activation of the p38 MAPK pathway, because both processes were abrogated by a specific p38 inhibitor. Therefore, the capacity of LDLs to induce fibroblast spreading and accelerate wound closure relies on their ability to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL cholesterol levels, IL-8 production, and extensive remodeling of the vessel wall.