993 resultados para HPC Hybrid Clouds
Resumo:
Purpose We investigated the effects of weed control and fertilization at early establishment on foliar stable carbon (δ13C) and nitrogen (N) isotope (δ15N) compositions, foliar N concentration, tree growth and biomass, relative weed cover and other physiological traits in a 2-year old F1 hybrid (Pinus elliottii var. elliottii (Engelm) × Pinus caribaea var. hondurensis (Barr. ex Golf.)) plantation grown on a yellow earth in southeast Queensland of subtropical Australia. Materials and methods Treatments included routine weed control, luxury weed control, intermediate weed control, mechanical weed control, nil weed control, and routine and luxury fertilization in a randomised complete block design. Initial soil nutrition and soil fertility parameters included (hot water extractable organic carbon (C) and total nitrogen (N), total C and N, C/N ratio, labile N pools (nitrate (NO3 −) and ammonium (NH4 +)), extractable potassium (K+)), soil δ15N and δ13C. Relative weed cover, foliar N concentrations, tree growth rate and physiological parameters including photosynthesis, stomatal conductance, photosynthetic nitrogen use efficiency, foliar δ15N and foliar δ13C were also measured at early establishment. Results and discussion Foliar N concentration at 1.25 years was significantly different amongst the weed control treatments and was negatively correlated to the relative weed cover at 1.1 years. Foliar N concentration was also positively correlated to foliar δ15N and foliar δ13C, tree height, height growth rates and tree biomass. Foliar δ15N was negatively correlated to the relative weed cover at 0.8 and 1.1 years. The physiological measurements indicated that luxury fertilization and increasing weed competition on these soils decreased leaf xylem pressure potential (Ψxpp) when compared to the other treatments. Conclusions These results indicate how increasing N resources and weed competition have implications for tree N and water use at establishment in F1 hybrid plantations of southeast Queensland, Australia. These results suggest the desirability of weed control, in the inter-planting row, in the first year to maximise site N and water resources available for seedling growth. It also showed the need to avoid over-fertilisation, which interfered with the balance between available N and water on these soils.
Resumo:
ICRISAT scientists, working with Indian programme counterparts, developed the world's first cytoplasmic-nuclear male sterility (CMS)-based commercial hybrid in a food legume, the pigeonpea [Cajanus cajan (L.) Millsp.]. The CMS, in combination with natural outcrossing of the crop, was used to develop viable hybrid breeding technology. Hybrid ICPH 2671 recorded 47% superiority for grain yield over the control variety ‘Maruti’ in multilocation on-station testing for 4 years. In the on-farm trials conducted in five Indian states, mean yield of this hybrid (1396 kg/ha) was 46.5% greater than that of the popular cv. ‘Maruti’ (953 kg/ha). Hybrid ICPH 2671 also exhibited high levels of resistance to Fusarium wilt and sterility mosaic diseases. The outstanding performance of this hybrid has led to its release for cultivation in India by both a private seed company (as ‘Pushkal’) and a public sector university (as ‘RV ICPH 2671’). Recent developments in hybrid breeding technology and high yield advantages realized in farmers' fields have given hope for a breakthrough in pigeonpea productivity.
Resumo:
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm 615 cm, 25 cm 617 cm, 25 cm 619 cm, 25 cm 621 cm, and 25 cm 623 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm615 cm to 25 cm623 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm617 cm to 25 cm623 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm 617 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm617 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice
Resumo:
A new class of compounds, viz., monothiocarbohydrazones, have been found to be hypergolic with anhydrous and red fuming nitric acids. A study of the ignition delays of the various thiocarbohydrazonenitric acid systems as a function of particle size and fuel/oxidizer ratio reveals no significant effect by these parameters. The observed ignition delays have been explained in terms of the chemical reactivity and structure of these compounds.
Resumo:
This paper analyses the education policy of Samoa to examine the values that are presented within as relevant to the education system. Drawing on the theory of postcolonialism and globalization, we illustrate how the global and local interact within the education policy to create a hybrid, heterogeneous mix of values and, while the policy acknowledges the significance of Samoan values, it is principally directed towards universal values being incorporated into the education system. We undertake a critical policy analysis to illustrate how the hybrid set of values are indicative of a neo-colonial discourse and argue that universal values are required, however, these need to be equally matched with local Samoan values for the education policy to be highly relevant, authentic and applicable to the Samoan education context.
Resumo:
This talk gives an overview of the project "Uncanny Nature", which incoporates a style of animation called Hybrid Stop Motion, that combines physical object armatures with virtual copies. The development of the production pipeline (using a mix of Blender, Dragonframe, Photoscan and Arduino) is discussed, as well as the way that Blender was used throughout the production to visualise, model, animate and composite the elements together.
Resumo:
Key message The potential for exploiting heterosis for sorghum hybrid production in Ethiopia with improved local adaptation and farmers preferences has been investigated and populations suitable for initial hybrid development have been identified. Abstract Hybrids in sorghum have demonstrated increased productivity and stability of performance in the developed world. In Ethiopia, the uptake of hybrid sorghum has been limited to date, primarily due to poor adaptation and absence of farmer’s preferred traits in existing hybrids. This study aimed to identify complementary parental pools to develop locally adapted hybrids, through an analysis of whole genome variability of 184 locally adapted genotypes and introduced hybrid parents (R and B). Genetic variability was assessed using genetic distance, model-based STRUCTURE analysis and pair-wise comparison of groups. We observed a high degree of genetic similarity between the Ethiopian improved inbred genotypes and a subset of landraces adapted to lowland agro-ecology with the introduced R lines. This coupled with the genetic differentiation from existing B lines, indicated that these locally adapted genotype groups are expected to have similar patterns of heterotic expression as observed between introduced R and B line pools. Additionally, the hybrids derived from these locally adapted genotypes will have the benefit of containing farmers preferred traits. The groups most divergent from introduced B lines were the Ethiopian landraces adapted to highland and intermediate agro-ecologies and a subset of lowland-adapted genotypes, indicating the potential for increased heterotic response of their hybrids. However, these groups were also differentiated from the R lines, and hence are different from the existing complementary heterotic pools. This suggests that although these groups could provide highly divergent parental pools, further research is required to investigate the extent of heterosis and their hybrid performance.
Resumo:
This paper presents a simple hybrid computer technique to study the transient behaviour of queueing systems. This method is superior to stand-alone analog or digital solution because the hardware requirement is excessive for analog technique whereas computation time is appreciable in the latter case. By using a hybrid computer one can share the analog hardware thus requiring fewer integrators. The digital processor can store the values, play them back at required time instants and change the coefficients of differential equations. By speeding up the integration on the analog computer it is feasible to solve a large number of these equations very fast. Hybrid simulation is even superior to the analytic technique because in the latter case it is difficult to solve time-varying differential equations.
Resumo:
In Maize, as with most cereals, grain yield is mostly determined by the total grain number per unit area, which is highly related to the rate of crop growth during the critical period around silking. Management practices such as plant density or nitrogen fertilization can affect the growth of the crop during this period, and consequently the final grain yield. Across the Northern Region maize is grown under a large range of plant populations under high year-to-year rainfall variability. Clear guidelines on how to match hybrids and management across environments and expected seasonal condition, would allow growers to increase yields and profits while managing risks. The objective of this research was to screen the response of commercial maize hybrids differing in maturity and prolificity (i.e. multi or single cobbing) types for their efficiency in the allocation of biomass into grain.
Resumo:
We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two-dimensional films and three-dimensional aggregates derived from N-stearoyl-L-alanine and N-lauroyl-L-alanine, respectively. The assemblies of N-stearoyl-L-alanine afforded stable films at the air-water interface. More compact assemblies were formed upon incorporation of AuNPs in the air-water interface of N-stearoyl-L-alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three-dimensional assemblies of N-lauroyl-L-alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long-range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze-dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel-nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular-level properties by means of manipulation of the information inscribed on the NP surface.
Resumo:
When a uniform flow of any nature is interrupted, the readjustment of the flow results in concentrations and rare-factions, so that the peak value of the flow parameter will be higher than that which an elementary computation would suggest. When stress flow in a structure is interrupted, there are stress concentrations. These are generally localized and often large, in relation to the values indicated by simple equilibrium calculations. With the advent of the industrial revolution, dynamic and repeated loading of materials had become commonplace in engine parts and fast moving vehicles of locomotion. This led to serious fatigue failures arising from stress concentrations. Also, many metal forming processes, fabrication techniques and weak-link type safety systems benefit substantially from the intelligent use or avoidance, as appropriate, of stress concentrations. As a result, in the last 80 years, the study and and evaluation of stress concentrations has been a primary objective in the study of solid mechanics. Exact mathematical analysis of stress concentrations in finite bodies presents considerable difficulty for all but a few problems of infinite fields, concentric annuli and the like, treated under the presumption of small deformation, linear elasticity. A whole series of techniques have been developed to deal with different classes of shapes and domains, causes and sources of concentration, material behaviour, phenomenological formulation, etc. These include real and complex functions, conformal mapping, transform techniques, integral equations, finite differences and relaxation, and, more recently, the finite element methods. With the advent of large high speed computers, development of finite element concepts and a good understanding of functional analysis, it is now, in principle, possible to obtain with economy satisfactory solutions to a whole range of concentration problems by intelligently combining theory and computer application. An example is the hybridization of continuum concepts with computer based finite element formulations. This new situation also makes possible a more direct approach to the problem of design which is the primary purpose of most engineering analyses. The trend would appear to be clear: the computer will shape the theory, analysis and design.
Resumo:
The lower hybrid mode excited in a plasma with cross-field current and density gradient induces an attractive potential between the negative-and positive-energy modes of the plasma. The growth rate is thereby reduced and becomes comparable with the damping rates due to wave-particle interaction. This leads to the saturation of the turbulent field. Some applications have been made to the turbulent heating experiments in plasma where cross-field current is present.
Resumo:
This paper highlights the Hybrid agent construction model being developed that allows the description and development of autonomous agents in SAGE (Scalable, fault Tolerant Agent Grooming Environment) - a second generation FIPA-Compliant Multi-Agent system. We aim to provide the programmer with a generic and well defined agent architecture enabling the development of sophisticated agents on SAGE, possessing the desired properties of autonomous agents - reactivity, pro-activity, social ability and knowledge based reasoning. © Springer-Verlag Berlin Heidelberg 2005.