936 resultados para HIGH-DIELECTRIC-CONSTANT


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of this thesis is to develop a proper microelectromechanical systems (MEMS) process to manufacture piezoelectric Parylene-C (PA-C), which is famous for its chemical inertness, mechanical and thermal properties and electrical insulation. Furthermore, piezoelectric PA-C is used to build miniature, inexpensive, non-biased piezoelectric microphones.

These piezoelectric PA-C MEMS microphones are to be used in any application where a conventional piezoelectric and electret microphone can be used, such as in cell phones and hearing aids. However, they have the advantage of a simplified fabrication process compared with existing technology. In addition, as a piezoelectric polymer, PA-C has varieties of applications due to its low dielectric constant, low elastic stiffness, low density, high voltage sensitivity, high temperature stability and low acoustic and mechanical impedance. Furthermore, PA-C is an FDA approved biocompatible material and is able to maintain operate at a high temperature.

To accomplish piezoelectric PA-C, a MEMS-compatible poling technology has been developed. The PA-C film is poled by applying electrical field during heating. The piezoelectric coefficient, -3.75pC/N, is obtained without film stretching.

The millimeter-scale piezoelectric PA-C microphone is fabricated with an in-plane spiral arrangement of two electrodes. The dynamic range is from less than 30 dB to above 110 dB SPL (referenced 20 µPa) and the open-circuit sensitivities are from 0.001 – 0.11 mV/Pa over a frequency range of 1 - 10 kHz. The total harmonic distortion of the device is less than 20% at 110 dB SPL and 1 kHz.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since the discovery in 1962 of laser action in semiconductor diodes made from GaAs, the study of spontaneous and stimulated light emission from semiconductors has become an exciting new field of semiconductor physics and quantum electronics combined. Included in the limited number of direct-gap semiconductor materials suitable for laser action are the members of the lead salt family, i.e . PbS, PbSe and PbTe. The material used for the experiments described herein is PbTe . The semiconductor PbTe is a narrow band- gap material (Eg = 0.19 electron volt at a temperature of 4.2°K). Therefore, the radiative recombination of electron-hole pairs between the conduction and valence bands produces photons whose wavelength is in the infrared (λ ≈ 6.5 microns in air).

The p-n junction diode is a convenient device in which the spontaneous and stimulated emission of light can be achieved via current flow in the forward-bias direction. Consequently, the experimental devices consist of a group of PbTe p-n junction diodes made from p –type single crystal bulk material. The p - n junctions were formed by an n-type vapor- phase diffusion perpendicular to the (100) plane, with a junction depth of approximately 75 microns. Opposite ends of the diode structure were cleaved to give parallel reflectors, thereby forming the Fabry-Perot cavity needed for a laser oscillator. Since the emission of light originates from the recombination of injected current carriers, the nature of the radiation depends on the injection mechanism.

The total intensity of the light emitted from the PbTe diodes was observed over a current range of three to four orders of magnitude. At the low current levels, the light intensity data were correlated with data obtained on the electrical characteristics of the diodes. In the low current region (region A), the light intensity, current-voltage and capacitance-voltage data are consistent with the model for photon-assisted tunneling. As the current is increased, the light intensity data indicate the occurrence of a change in the current injection mechanism from photon-assisted tunneling (region A) to thermionic emission (region B). With the further increase of the injection level, the photon-field due to light emission in the diode builds up to the point where stimulated emission (oscillation) occurs. The threshold current at which oscillation begins marks the beginning of a region (region C) where the total light intensity increases very rapidly with the increase in current. This rapid increase in intensity is accompanied by an increase in the number of narrow-band oscillating modes. As the photon density in the cavity continues to increase with the injection level, the intensity gradually enters a region of linear dependence on current (region D), i.e. a region of constant (differential) quantum efficiency.

Data obtained from measurements of the stimulated-mode light-intensity profile and the far-field diffraction pattern (both in the direction perpendicular to the junction-plane) indicate that the active region of high gain (i.e. the region where a population inversion exists) extends to approximately a diffusion length on both sides of the junction. The data also indicate that the confinement of the oscillating modes within the diode cavity is due to a variation in the real part of the dielectric constant, caused by the gain in the medium. A value of τ ≈ 10-9 second for the minority- carrier recombination lifetime (at a diode temperature of 20.4°K) is obtained from the above measurements. This value for τ is consistent with other data obtained independently for PbTe crystals.

Data on the threshold current for stimulated emission (for a diode temperature of 20. 4°K) as a function of the reciprocal cavity length were obtained. These data yield a value of J’th = (400 ± 80) amp/cm2 for the threshold current in the limit of an infinitely long diode-cavity. A value of α = (30 ± 15) cm-1 is obtained for the total (bulk) cavity loss constant, in general agreement with independent measurements of free- carrier absorption in PbTe. In addition, the data provide a value of ns ≈ 10% for the internal spontaneous quantum efficiency. The above value for ns yields values of tb ≈ τ ≈ 10-9 second and ts ≈ 10-8 second for the nonradiative and the spontaneous (radiative) lifetimes, respectively.

The external quantum efficiency (nd) for stimulated emission from diode J-2 (at 20.4° K) was calculated by using the total light intensity vs. diode current data, plus accepted values for the material parameters of the mercury- doped germanium detector used for the measurements. The resulting value is nd ≈ 10%-20% for emission from both ends of the cavity. The corresponding radiative power output (at λ = 6.5 micron) is 120-240 milliwatts for a diode current of 6 amps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, microwave dielectric properties of A-site substitution by La3+ in (Pb0.45Ca0.55) (Fe0.5Nb0.5) 03 system were investigated. Microwave dielectric properties of A-site charge unbalance substitution of [(Pb0.45Ca0.55)(1-x) La-x] (Fe0.5Nb0.5)O-3(+) (P45CLFN) were improved because the solid solution of small amount of surplus La3+ with (Pb, Ca)(2+) could eliminate oxygen vacancies, and the formation of secondary phase (pyrochlore) was also caused by surplus La3+. The decreasing of dielectric constant with the increase of La3+ content is due to the formation of pyrochlore. The grain size is changed slightly and Q(f) values (7000 similar to 7300 GHz) are almost unchanged at x = 0.02 similar to 0.10, but the temperature coefficient of resonant frequency (TCF) are increased and changed from negative to positive. TCF is zero at x 0.075 with Q(f) = 7267 GHz and K = 89. TCF of all specimens are within +/- 5 x 10(-6)degrees C-1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This document presents the modeling and characterization of novel optical devices based on periodic arrays of multiwalled carbon nanotubes. Vertically aligned carbon nanotubes can be grown in the arrangement of two-dimensional arrays of precisely determined dimensions. Having their dimensions comparable to the wavelength of light makes carbon nanotubes good candidates for utilization in nano-scale optical devices. We report that highly dense periodic arrays of multiwalled carbon nanotubes can be utilized as sub-wavelength structures for establishing advanced optical materials, such as metamaterials and photonic crystals. We demonstrate that when carbon nanotubes are grown close together at spacing of the order of few hundred nanometers, they display artificial optical properties towards the incident light, acting as metamaterials. By utilizing these properties we have established micro-scaled plasmonic high pass filter which operates in the optical domain. Highly dense arrays of multiwalled also offer a periodic dielectric constant to the incident light and display interesting photonic band gaps, which are frequency domains within which on wave propagation can take place. We have utilized these band gaps displayed by a periodic nanotube array, having 400 nm spacing, to construct photonic crystals based optical waveguides and switches. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The low frequency (<13 MHz) dielectric response and its light-induced change in undoped a-Si:H were investigated in detail. The dielectric constant epsilon (the real part) in this range decreases with illumination time: following a stretched exponential law similar to that found for other light-induced changes. The saturation relative change was about 0.1-0.2 % for the measured samples. The change is fading away either after repeated illumination-annealing training or by aging at room temperature. The present results indicate some rearrangement of the whole Si network caused by light soaking.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have used ab initio pseudopotential method to generate basis wavefunctions and eigen energies to carry out first principle calculations of the static macroscopic dielectric constant for GaAs and GaP. The resulted converged random phase approximation (RPA) value is 12.55 and 10.71, in excellent agreement to the experimental value of 12.4 and 10.86, respectively. The inclusion of the exchange correlation contribution makes the calculated result slightly worsen. A convergence test with respect to the number of k points in Brillouin zone (BZ) integration was carried out. Sixty irreducible BZ k points were used to achieve the converged results. Integration with only 10 special k points increased the RPA value by 15%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A multi-component substitution of Co and Ni was incorporated into ZnTiO3 to form pure hexagonal Zn1-x(Co1/2Ni1/2)xTiO(3) (x = 0,0.8,0.9,1.0) dielectric ceramic powders by a modified sol-gel route, following heat treatments at 600 degrees C for 3 h and at 800 degrees C for 6 h. Differential scanning calorimetry measurements revealed that the order of increasing thermal stability of solid solution compound Zn1-x(Co1/2Ni1/2)(x)TiO3 was ZnTiO3 (945 degrees C), Zn0.1Ni0.9TiO3 (1346 degrees C), Zn-0.1(Co1/2Ni1/2)(0.9)TiO3 (1390 degrees C), and Zn0.1Co0.9TiO3 (> 1400 degrees C). Both the dielectric constant and loss tangent reached a maximum at x = 0.8 and then decreased with solubility, x, and measurement frequency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polyimide hybrid films containing bimetalic compounds were obtained by codoping poly(amic acid) with a barium and titanium precursor prepared from BaCO3, Ti(OBu)(4), and lactic acid followed by casting and thermal curing. FTIR, WAXD, and XPS measurements showed that barium and titanium precursor could be transformed to BaTiO3 at a temperature above 650 degreesC, while the mixed oxides were only found in hybrid films. The measurements of TEM and AFM indicated a homogeneous distribution of inorganic phase with particle sizes less than 50 nm. The hybrid films exhibited fairly high thermal stability, good optical transparency, and promising mechanical properties. The incorporation of 10 wt % barium and titanium oxide lowered surface and volume electrical resistivity by 2 and 5 orders, respectively, increasing dielectric constant from 3.5 to 4.2 and piezoelectric constant from 3.8 to 5.2 x 10(-12) c/N, relative to the nondoped polyimide film.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By using Pillips and van Vechten theory, the chemical bond parameters and dielectric constants of REM (RE=rare earth, M=N, P, As, Sb) crystals were calculated. The values calculated of dielectric constants agree with the experimental values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The perturbation method is developed to deal with the effective nonlinear dielectric responses of weakly nonlinear graded composites, which consist of the graded inclusion with a linear dielectric function of spatial variables of inclusion material. For Kerr-like nonlinear graded composites, as an example in two dimensions, we have used the perturbation method to solve the boundary value problems of potentials, and studied the effective responses of nonlinear graded composites, where a cylindrical inclusion with linear dielectric function and nonlinear dielectric constant is randomly embedded in a homogeneous host with linear and nonlinear dielectric constants. For the exponential function and the power-law dielectric profiles of cylindrical inclusions, in the dilute limit, we have derived the formulae of effective nonlinear responses of both graded nonlinear composites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effective dielectric response of linear composites containing graded material is investigated under an applied electric field Eo. For the cylindrical inclusion with gradient dielectric function, epsilon(i)(r) = b + cr, randomly embedded in a host with dielectric constant epsilon(m), we have obtained the exact solution of local electric potential of the composite media regions, which obeys a linear constitutive relation D = epsilonE, using hypergeometric function. In dilute limit, we have derived the effective dielectric response of the linear composite media. Furthermore, for larger volume fraction, the formulas of effective dielectric response of the graded composite media, are given.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effective dielectric response of composites containing graded material is investigated when an external uniform electric field E-0 is applied to it. For a spherical particle with gradient dielectric constant, epsilon(i) (r) = b + cr, randomly embedded in a host with dielectric constant epsilon(m), we have obtained the exact solution of local electric potential in the composite media regions, which obey a linear constitutive relation D = epsilonE, using hypergeometric function. In dilute limit, the effective dielectric response of the linear graded composite media is derived. Furthermore, for larger volume fraction, we have given an effective medium approximation to estimate the effective dielectric response of the graded composite media. (C) 2003 Elsevier B.V All rights reserved.