987 resultados para Gums and resins
Resumo:
The simultaneous etherification of isobutene and isoamylenes with ethanol has been studied using macroreticu-lar acid ion-exchange resins as catalyst. Most of the experiments were carried out over Amberlyst-35. In addition,Amberlyst-15 and Purolite CT-275 were also tested. Chemical equilibrium of four chemical reactions was studied:ethyl tert-butyl ether formation, tert-amyl ethyl ether formation from isoamylenes (2-methyl-1-butene and 2-methyl-2-butene) and isomerization reaction between both isoamylenes. Equilibrium data were obtained in a batchwisestirred tank reactor operated at 2.0 MPa and within the temperature range from 323 to 353 K. Experimental molarstandard enthalpy and entropy changes of reaction were determined for each reaction. From these data, the molarenthalpy change of formation of ethyl tert-butyl ether and tert-amyl ethyl ether were estimated. Besides, the chemical equilibrium between both diisobutene dimers, 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene, wasevaluated. A good agreement between thermodynamic results for the simultaneous etherification carried out in thiswork and those obtained for the isolated ethyl tert-butyl ether and tert-amyl ethyl ether systems was obtained.
Resumo:
Weak acid cation exchange (WAC) resins are used in the chromatographic separation of betaine from vinasse, a by-product of sugar industry. The ionic form of the resin determines the elution time of betaine. When a WAC-resin is in hydrogen form, the retention time of betaine is the longest and betaine elutes as the last component of vi-nasse from the chromatographic column. If the feed solution contains salts and its pH is not acidic enough to keep the resin undissociated, the ionic form of the hydrogen form resin starts to alter. Vinasse contains salts and its pH is around 5, it also contains weak acids. To keep the metal ion content (Na/H ratio) of the resin low enough to ensure successful separation of betaine, acid has to be added to either eluent (water) or vinasse. The aim of the present work was to examine by laboratory experiments which option requires less acid. Also the retention mechanism of betaine was investigated by measuring retention volumes of acetic acid and choline in different Na/H ratios of the resin. It was found that the resulting ionic form of the resin is the same regardless of whether the regeneration acid is added to the eluent or the feed solution (vinasse). Be-sides the salt concentration and the pH of vinasse, also the concentration of weak acids in the feed affects the resulting ionic form of the resin. The more buffering capacity vinasse has, the more acid is required to keep the ionic form of the resin desired. Vinasse was found to be quite strong buffer solution, which means relatively high amounts of acid are required to prevent the Na/H ratio from increasing too much. It is known that the retention volume of betaine decreases significantly, when the Na/H ratio increases. This is assumed to occur, because the amount of hydrogen bonds between the carboxylic groups of betaine and the resin decreases. Same behavior was not found with acetic acid. Choline has the same molecular structure as betaine, but instead of carboxylic group it has hydroxide group. The retention volume of choline increased as the Na/H ratio of the resin increased, because of the ion exchange reaction between choline cation and dissociated carboxylic group of the resin. Since the retention behavior of choline on the resin is opposite to the behavior of be-taine, the strong affinity of betaine towards hydrogen form WAC-resin has to be based on its carboxylic group. It is probable that the quaternary ammonium groups also affect the behavior of the carboxylic groups of betaine, causing them to form hydrogen bonds with the carboxylic groups of the resin.
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
Two vegetable wastes, cork bark and grape stalks, were investigated for the removal of methylene blue from aqueous solution. The effects of contact time, dye concentration, pH, and temperature on sorption were studied relative to adsorption on a commercially-activated carbon. The highest adsorption yield was obtained within the pH range 5 to 10 for grape stalks and 7 to 10 for cork bark. The sorption kinetics of dye onto activated carbon and grape stalks was very fast. Kinetics data were fitted to the pseudo-first and second order kinetic equations, and the values of the pseudo-second-order initial rate constants were found to be 1.69 mg g-1 min-1 for activated carbon, 2.24 mg g-1 min-1 for grape stalks, and 0.90 mg g-1 min-1 for cork bark. Langmuir maximum sorption capacities for activated carbon, grape stalks, and cork bark for methylene blue estimated by the Orthogonal Distance Regression method (ODR) were 157.5 mg g-1, 105.6 mg g-1, and 30.52 mg g-1, respectively. FTIR spectra indicated that carboxylic groups and lignin play a significant role in the sorption of methylene blue. Electrostatic forces, n-p interactions, cation-p, and p-p stacking interactions contribute to methylene blue sorption onto grape stalks and cork bark. Grape stalks can be considered an efficient biosorbent and as a viable alternative to activated carbon and ion-exchange resins for the removal of methylene blue
Resumo:
This work examines traditional and new routes for removal of H2S and other sulfur compounds from spent sufidic caustic (SSC). SH- (hydrogenosulfide) and S2- (sulfide) ions were quantitatively oxidized at 25 ºC using H2O2, NaOCl or a spent sulfochromic mixture. SH-/S2- ions were also removed via reaction with freshly prepared iron or manganese hydroxides, or after passing the SSC through strong basic anion exchange resins (OH- form). The treated caustic solution, as well as iron/manganese hydroxides, removed H2S from diesel samples at 25 ºC. SSC treatment via strong basic anion-exchange resins produced the treated caustic solution with the highest free alkalinity.
Resumo:
This dissertation is based on 5 articles which deal with reaction mechanisms of the following selected industrially important organic reactions: 1. dehydrocyclization of n-butylbenzene to produce naphthalene 2. dehydrocyclization of 1-(p-tolyl)-2-methylbutane (MB) to produce 2,6-dimethylnaphthalene 3. esterification of neopentyl glycol (NPG) with different carboxylic acids to produce monoesters 4. skeletal isomerization of 1-pentene to produce 2-methyl-1-butene and 2-methyl-2-butene The results of initial- and integral-rate experiments of n-butylbenzene dehydrocyclization over selfmade chromia/alumina catalyst were applied when investigating reaction 2. Reaction 2 was performed using commercial chromia/alumina of different acidity, platina on silica and vanadium/calcium/alumina as catalysts. On all catalysts used for the dehydrocyclization, major reactions were fragmentation of MB and 1-(p-tolyl)-2-methylbutenes (MBes), dehydrogenation of MB, double bond transfer, hydrogenation and 1,6-cyclization of MBes. Minor reactions were 1,5-cyclization of MBes and methyl group fragmentation of 1,6- cyclization products. Esterification reactions of NPG were performed using three different carboxylic acids: propionic, isobutyric and 2-ethylhexanoic acid. Commercial heterogeneous gellular (Dowex 50WX2), macroreticular (Amberlyst 15) type resins and homogeneous para-toluene sulfonic acid were used as catalysts. At first NPG reacted with carboxylic acids to form corresponding monoester and water. Then monoester esterified with carboxylic acid to form corresponding diester. In disproportionation reaction two monoester molecules formed NPG and corresponding diester. All these three reactions can attain equilibrium. Concerning esterification, water was removed from the reactor in order to prevent backward reaction. Skeletal isomerization experiments of 1-pentene were performed over HZSM-22 catalyst. Isomerization reactions of three different kind were detected: double bond, cis-trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair.
Resumo:
A method to synthesize ethyl β-ᴅ-glucopyranoside (BEG) was searched. Feasibility of different ion exchange resins was examined to purify the product from the synthetic binary solution of BEG and glucose. The target was to produce at least 50 grams of 99 % pure BEG with a scaled up process. Another target was to transfer the batch process into steady-state recycle chromatography process (SSR). BEG was synthesized enzymatically with reverse hydrolysis utilizing β-glucosidase as a catalyst. 65 % of glucose reacted with ethanol into BEG during the synthesis. Different ion exchanger based resins were examined to separate BEG from glucose. Based on batch chromatography experiments the best adsorbent was chosen between styrene based strong acid cation exchange resins (SAC) and acryl based weak acid cation exchange resins (WAC). CA10GC WAC resin in Na+ form was chosen for the further separation studies. To produce greater amounts of the product the batch process was scaled up. The adsorption isotherms for the components were linear. The target purity was possible to reach already in batch without recycle with flowrate and injection size small enough. 99 % pure product was produced with scaled-up batch process. Batch process was transferred to SSR process utilizing the data from design pulse chromatograms and Matlab simulations. The optimal operating conditions for the system were determined. Batch and SSR separation results were compared and by using SSR 98 % pure products were gained with 40 % higher productivity and 40 % lower eluent consumption compared to batch process producing as pure products.
Resumo:
Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.
Resumo:
Increased preference for healthy and functional foods could be an opportunity to increase the consumption of clarified cashew apple juice. Given its level of fructose, glucose, and vitamin C, it can be used as a base in blends. However, its characteristic odor can interfere with the acceptance of these formulations, especially by consumers who are not familiar with cashew aroma. The aim of this study was to evaluate the effect of treatment with macroporous resins (FPA54, FPX66, XAD761, and XAD4) on the volatile profile and physicochemical characteristics of clarified cashew apple juice. After the treatment with the resins, the volatile profile was evaluated using solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). The physicochemical analyses performed were: pH, soluble solids (ºBrix), total titrable acidity, reducing sugars, and vitamin C. Gas chromatography analyses showed that XAD4 and FPX66 led to a reduction of the initial amount of volatile compounds to 14.05% and 15.72%, respectively. These two resins also did not affect the physicochemical characteristics of the clarified cashew apple juice.
Resumo:
Introduction : La force d’adhésion à l'interface métal-céramique avec les résines auto-polymérisantes destinées au collage indirect des boîtiers orthodontiques n'a pas été évaluée à ce jour et un protocole clinique basé sur la littérature scientifique est inexistant. Objectifs : 1) Comparer la force de cisaillement maximale entre des boîtiers métalliques et des surfaces en porcelaine préparées selon différentes méthodes; 2) Suggérer un protocole clinique efficace et prévisible. Matériel et méthodes : Quatre-vingt-dix disques en leucite (6 groupes; n = 15/groupe) ont été préparés selon 6 combinaisons de traitements de surface : mécaniques (+ / - fraisage pour créer les rugosités) et chimiques (acide fluorhydrique, apprêt, silane). Des bases en résine composite Transbond XT (3M Unitek, Monrovia, California) faites sur mesure ont été collées avec le système de résine adhésive auto-polymérisante Sondhi A + B Rapid Set (3M Unitek, Monrovia, California). Les échantillons ont été préservés (H2O/24hrs), thermocyclés (500 cycles) et testés en cisaillement (Instron, Norwood, Massachusetts). Des mesures d’Index d’adhésif résiduel (IAR) ont été compilées. Des tests ANOVAs ont été réalisés sur les rangs étant donné que les données suivaient une distribution anormale et ont été ajustés selon Tukey. Un Kruskall-Wallis, U-Mann Whitney par comparaison pairée et une analyse de Weibull ont aussi été réalisés. Résultats : Les médianes des groupes varient entre 17.0 MPa (- fraisage + acide fluorhydrique) à 26.7 MPa (- fraisage + acide fluorhydrique + silane). Le fraisage en surface ne semble pas affecter l’adhésion. La combinaison chimique (- fraisage + silane + apprêt) a démontré des forces de cisaillement significativement plus élevées que le traitement avec (- fraisage + acide fluorhydrique), p<0,05, tout en possédant des forces similaires au protocole typiquement suggéré à l’acide fluorhydrique suivi d’une application de silane, l’équivalence de (- fraisage + acide fluorhydrique + silane). Les mesures d’IAR sont significativement plus basses dans le groupe (- fraisage + acide fluorhydrique) en comparaison avec celles des 5 autres groupes, avec p<0,05. Malheureusement, ces 5 groupes ont des taux de fracture élévés de 80 à 100% suite à la décimentation des boîtiers. Conclusion : Toutes les combinaisons de traitement de surface testées offrent une force d’adhésion cliniquement suffisante pour accomplir les mouvements dentaires en orthodontie. Une application de silane suivie d’un apprêt est forte intéressante, car elle est simple à appliquer cliniquement tout en permettant une excellente adhésion. Il faut cependant avertir les patients qu’il y a un risque de fracture des restorations en céramique lorsque vient le moment d’enlever les broches. Si la priorité est de diminuer le risque d’endommager la porcelaine, un mordançage seul à l’acide hydrofluorique sera suffisant.
Resumo:
This thesis aims to develop new toughened systems for epoxy resin via physical and chemical modifications. Initially the synthesis of DGEBA was carried out and the properties compared with that of the commercial sample. Subsequently the modifier resins to be employed were synthesized. The synthesized resin were characterized by spectroscopic method (FTIR and H NMR), epoxide equivalent and gel permeation chromatography. Chemical modification involves the incorporation of thermoset resins such a phenolics, epoxy novolacs, cardanol epoxides and unsaturated polyester into the epoxy resin by reactive belnding. The mechanical and thermal properties of the blends were studied. In the physical modification route, elastomers, maleated elastomers and functional elastomers were dispersed as micro-sized rubber phase into the continuous epoxy phase by a solution blending technique as against the conventional mechanical blending technique. The effect of matrix toughening on the properties of glass reinforced composites and the effect of fillers on the properties of commercial epoxy resin were also investigated. The blends were characterized by thermo gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy and mechanical property measurements. Among the thermoset blends, substantial toughening was observed in the case of epoxy phenolic novolacs especially epoxy para cresol novolac (ECN). In the case of elastomer blending , the toughest blends were obtained in the case of maleic anhydride grafted NBR. Among functional elastomers the best results were obtained with CTBN. Studies on filled and glass reinforced composites employing modified epoxy as matrix revealed an overall improvement in mechanical properties
Resumo:
This thesis presents the findings of a study on incorporating vanous thermoset resins into natural rubber for property improvement. Natural rubber is an important elastomer with the unique attribute of being a renewable agricultural product. The study was undertaken to investigate the extent to which the drawbacks of natural rubber, especially its poor thermal and oil resistance propel1ies could be nullified by blending with common thermoset resins. A thorough and comparative understanding of the perfonnance of different resins from this viewpoint will be beneficial for both natural IUbber processors and consumers. In this study the thennoset resins used were epoxy resin, phenolics, epoxidised phenolics and unsaturated polyester resin.The resins were incorporated into NR during compounding and their effects on the properties of NR were studied after vulcanization. Properties were studied for both gum and filled N R compounds. The important properties studied are cure characteristics, mechanical properties, ageing propel1ies, thermal propel1ies, crosslink density and extractability. Characterization studies were also conducted using FTIR, TGA and DSC.Improvement in mechanical properties was noticed in many cases. The results show that most resins lead to a reduction in the cure time of NR. The perfonnance of epoxy resin is most noticeable in this respect. Mechanical properties of the modified IUbber show maximum improvement in the case of epoxidised novolacs. Most resins are seen to improve the thermal and oil resistance propel1ies of NR. Epoxy novolacs show maximum effect in this respect also. However the presence of tillers is found to moderate the positive effects of the thermoset resins considerably.