929 resultados para Gram-positive Bacteria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SIQUEIRA JR. et al. Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., v. 104, n. 1, p. 122-130, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions of the cationic lipodepsipeptide syringopeptin 25 A (SP25A) with mercury-supported dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS) and dioeleoylphosphatidic acid (DOPA) self-assembled monolayers (SAMs) were investigated by AC voltammetry in 0.1 M KCl at pH 3, 5.4 and 6.8. SP25A targets and penetrates the DOPS SAM much more effectively than the other SAMs not only at pH 6.8, where the DOPS SAM is negatively charged, but also at pH 3, where it is positively charged just as SP25A. Similar investigations at tethered bilayer lipid membranes (tBLMs) consisting of a thiolipid called DPTL anchored to mercury, with a DOPS, DOPA or DOPC distal monolayer on top of it, showed that, at physiological transmembrane potentials, SP25A forms ion channels spanning the tBLM only if DOPS is the distal monolayer. The distinguishing chemical feature of the DOPS SAM is the ionic interaction between the protonated amino group of a DOPS molecule and the carboxylate group of an adjacent phospholipid molecule. Under the reasonable assumption that SP25A preferentially interacts with this ion pair, the selective lipodepsipeptide antimicrobial activity against Gram-positive bacteria may be tentatively explained by its affinity for similar protonated amino-carboxylate pairs, which are expected to be present in the peptide moieties of peptidoglycan strands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SIQUEIRA JR. et al. Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., v. 104, n. 1, p. 122-130, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sponges are simple multicellularorganisms; they inhabit in marine environments from the polar seas to the tropical waterswhere they are more abundant. These species are exposed to large populations of microbes, reason that explains their complex morphological and cellular defense mechanism, which are used by these organisms to fight against pathogens. The purpose of this study was to evaluate the antibacterial activity of the marine sponge Ircinia campana, whichinhabits in the south of the Caribbean coast of Costa Rica against  Sthapylococcus aureus gram-positive bacteria. Sampleswere collected in Punta Uva in Limónduring July of 2007. The active compounds were obtainedby extraction with acetone (crude extract); and subsequently, chromatographic extracts were obtained using fractions 1:4 hexane: ethyl acetate. The antibacterial activities of the different fractions, including the  crude extract were tested.Our results suggest a zone of inhibition of 14.60 ±0.25 mm for the crude extract and18.70±0.25mm for the most active fraction separated by chromatography. The metabolite responsible for the antibacterial activity was isolated by High Performance Liquid Chromatography (HPLC)and preliminarily characterized through ultraviolet (UV) and infrared (IR) spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phagocytosis of bacteria by specialized blood cells, known as hemocytes, is a vital component of Drosophila cellular immunity. To identify novel genes that mediate the cellular response to bacteria, we conducted three separate genetic screens using the Drosophila Genetic Reference Panel (DGRP). Adult DGRP lines were tested for the ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus aureus or the Gram-negative bacteria Escherichia coli. The DGRP lines were also screened for the ability of their hemocytes to clear S. aureus infection through the process of phagosome maturation. Genome-wide association analyses were performed to identify potentially relevant single nucleotide polymorphisms (SNPs) associated with the cellular immune phenotypes. The S. aureus phagosome maturation screen identified SNPs near or in 528 candidate genes, many of which have no known role in immunity. Three genes, dpr10, fred, and CG42673, were identified whose loss-of-function in blood cells significantly impaired the innate immune response to S. aureus. The DGRP S. aureus screens identified variants in the gene, Ataxin 2 Binding Protein-1 (A2bp1) as important for the cellular immune response to S. aureus. A2bp1 belongs to the highly conserved Fox-1 family of RNA-binding proteins. Genetic studies revealed that A2bp1 transcript levels must be tightly controlled for hemocytes to successfully phagocytose S. aureus. The transcriptome of infected and uninfected hemocytes from wild type and A2bp1 mutant flies was analyzed and it was found that A2bp1 negatively regulates the expression of the Immunoglobulin-superfamily member Down syndrome adhesion molecule 4 (Dscam4). Silencing of A2bp1 and Dscam4 in hemocytes rescues the fly’s immune response to S. aureus indicating that Dscam4 negatively regulates S. aureus phagocytosis. Overall, we present an examination of the cellular immune response to bacteria with the aim of identifying and characterizing roles for novel mediators of innate immunity in Drosophila. By screening panel of lines in which all genetic variants are known, we successfully identified a large set of candidate genes that could provide a basis for future studies of Drosophila cellular immunity. Finally, we describe a novel, immune-specific role for the highly conserved Fox-1 family member, A2bp1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The microflora hypothesis may be the underlying explanation for the growth of inflammatory disease. In addition to many known affecting factors, knowing the gut microbiota of healthy newborns can help to understand the gut immunity and modulate it. Objectives: This study examined the microbiota of healthy newborns from urban regions. Patients and Methods: We enrolled 128 full-term newborns, born at Seoul St. Mary and St. Paul hospital from January 2009 to February 2010. All 143 samples of feces were cultivated in six culture plates to determine the amounts of total bacteria, anaerobes, gram-positive bacteria, coliforms, lactobacilli, and bifidobacteria. The samples were evaluated with a bivariate correlation between coliforms and lactobacilli. Terminal restriction fragment length polymorphism (T-RFLP) analysis with HhaI and MspI and a clustering analysis were performed for determination of diversity. Results: Bacteria were cultured in 61.5% of feces in the following order: anaerobes, gram-positive bacteria, lactobacilli, coliform, and bifidobacteria. The growth of total bacteria and lactobacilli increased in feces defecated after 24 hours of birth (P < 0.001, P = 0.008) and anaerobes decreased (P = 0.003). A negative correlation between the growth of lactobacilli and coliforms was found (r = -463, P < 0.001). Conclusions: This study confirms that bacterial colonization of healthy newborns born in cities is non-sterile, but has early diversification and inter-individuality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To prepare and evaluate some 2-piperidinomethylamino-4-(7-H/substitutedcoumarin-3-yl)-6- chlorosubstitutedphenyl pyrimidines as antimicrobial agents. Methods: Some 2-piperidinomethylamino-4-(7-H/substitutedcoumarin-3-yl)-6-chlorosubstitutedphenyl pyrimidines were prepared by reacting 2-amino-4-(7-H/substitutedcoumarin-3-yl)-6- (chlorosubstitutedphenyl) pyrimidines with piperidine and formaldehyde. The chemical structures of the synthesized compounds were elucidated by Fourier transform infrared (FTIR), 1H-nuclear magnetic resonance (1H-NMR), mass spectrometry and elemental analysis. These compounds were investigated for their antimicrobial activity against ten bacteria and five fungi by serial plate dilution method using standard drugs, namely, ofloxacin and ketoconazole, respectively, and their minimum inhibitory concentrations (MICs) were also determined. Results: A total of eighteen new compounds (1a-18a) were synthesized. Compound 6a (MIC = 50 μg/mL; p < 0.05 or less) displayed the highest activity against S. aureus , E. faecalis , Staphylococcus epidermidis , B. subtilis , and B. cereus . Compound 6a further showed good activity (MIC = 25 μg/mL; p < 0.05 or less) against E. coli ; P. aeruginosa K. pneumonia , B. bronchiseptica , and P. vulgaris . Compounds 6a (MIC = 25 μg/mL; p < 0.0001) and 17a (MIC = 25 μg/mL; p < 0.0001) displayed very good activity against C. albicans , A. niger , A. flavus , M. purpureous , and P. citrinum , respectively. Analysis of structure-activity relationship revealed that the presence of bromo group at 7-postion of the coumarin moiety along with the 4-chlorophenyl group at position-6 of the pyrimidine ring is critical for antimicrobial activity against Gram-positive bacteria, Gram negative bacteria and fungi. Conclusion: The synthesized 2-piperidino derivatives are better antifungal and antibacterial agents than the earlier reported 2-morpholino derivatives, but require further investigations against other microbial strains to ascertain their broad spectrum antimicrobial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among isolates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TEM-1 is the dominant β-lactamase of Haemophilus influenzae and can be located on small plasmids. Three distinct plasmids with sizes from 4,304 to 5,646 nucleotides (nt) were characterized: pA1606, pA1209, and pPN223. In addition to TEM-1 and a replication enzyme of the Rep 3 superfamily, pA1606 carries a Tn3 resolvase gene and pA1606 and pA1209 carry an open reading frame (ORF) similar to a plasmid recombination enzyme gene described in Gram-positive bacteria. The plasmids transformed strain Rd to the ampicillin-resistant phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus suis is an emerging zoonotic pathogen. With the lack of an effective vaccine, antibiotics remain the main tool to fight infections caused by this pathogen. We have previously observed a reserpine-sensitive fluoroquinolone (FQ) efflux phenotype in this species. Here, SatAB and SmrA, two pumps belonging to the ATP binding cassette (ABC) and the major facilitator superfamily (MFS), respectively, have been analyzed in the fluoroquinolone-resistant clinical isolate BB1013. Genes encoding these pumps were overexpressed either constitutively or in the presence of ciprofloxacin in this strain. These genes could not be cloned in plasmids in Escherichia coli despite strong expression repression. Finally, site-directed insertion of smrA and satAB in the amy locus of the Bacillus subtilis chromosome using ligated PCR amplicons allowed for the functional expression and study of both pumps. Results showed that SatAB is a narrow-spectrum fluoroquinolone exporter (norfloxacin and ciprofloxacin), susceptible to reserpine, whereas SmrA was not involved in fluoroquinolone resistance. Chromosomal integration in Bacillus is a novel method for studying efflux pumps from Gram-positive bacteria, which enabled us to demonstrate the possible role of SatAB, and not SmrA, in fluoroquinolone efflux in S. suis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lignocellulosic materials, such as sugar cane bagasse, a waste product of the sugarcane processing industry, agricultural residues and herbaceous crops, may serve as an abundant and comparatively cheap feedstock for largescale industrial fermentation, resulting in the production of marketable end-products. However, the complex structure of lignocellulosic materials, the presence of various hexose and pentose sugars in the hemicellulose component, and the presence of various compounds that inhibit the organisms selected for the fermentation process, all constitute barriers that add to the production costs and make full scale industrial production economically less feasible. The work presented in this thesis was conducted in order to screen microorganisms for ability to utilize pentose sugars derived from the sugar mill industrial waste. A large number of individual bacterial strains were investigated from hemi-cellulose rich material collected at the Proserpine and Maryborough sugar mills, notably soil samples from the mill sites. The research conducted to isolation of six pentose-capable Gram-positive organisms from the actinomycetes group by using pentose as a sole carbon source in the cultivation process. The isolates were identified as Corynebacterium glutamicum, Actinomyces odontolyticus, Nocardia elegans, and Propionibacterium freudenreichii all of which were isolated from the hemicellulose-enriched soil. Pentose degrading microbes are very rare in the environment, so this was a significant discovery. Previous research indicated that microbes could degrade pentose after genetic modification but the microbes discovered in this research were able to naturally utilize pentose. Six isolates, identified as four different genera, were investigated for their ability to utilize single sugars as substrates (glucose, xylose, arabinose or ribose), and also dual sugars as substrates (a hexose plus a pentose). The results demonstrated that C. glutamicum, A. odontolyticus, N. elegans, and P. freudenreichii were pentose-capable (able to grow using xylose or other pentose sugar), and also showed diauxie growth characteristics during the dual-sugar (glucose, in combination with xylose, arabinose or ribose) carbon source tests. In addition, it was shown that the isolates displayed very small differences in growth rates when grown on dual sugars as compared to single sugars, whether pentose or hexose in nature. The anabolic characteristics of C. glutamicum, A. odontolyticus, N. elegans and P. freudenreichii were subsequently investigated by qualitative analysis of their end-products, using high performance liquid chromatography (HPLC). All of the organisms produced arginine and cysteine after utilization of the pentose substrates alone. In addition, P. freudenreichii produced alanine and glycine. The end-product profile arising from culture with dual carbon sources was also tested. Interestingly, this time the product was different. All of them produced the amino acid glycine, when grown on a combination substrate-mix of glucose with xylose, and also glucose with arabinose. Only N. elegans was able to break down ribose, either singly or in combination with glucose, and the end-product of metabolism of the glucose plus ribose substrate combination was glutamic acid. The ecological analysis of microbial abundance in sugar mill waste was performed using denaturing gradient gel electrophoresis (DGGE) and also the metagenomic microarray PhyloChip method. Eleven solid samples and seven liquid samples were investigated. A very complex bacterial ecosystem was demonstrated in the seven liquid samples after testing with the PhyloChip method. It was also shown that bagasse leachate was the most different, compared to all of the other samples, by virtue of its richness in variety of taxa and the complexity of its bacterial community. The bacterial community in solid samples from Proserpine, Mackay and Maryborough sugar mills showed huge diversity. The information found from 16S rDNA sequencing results was that the bacterial genera Brevibacillus, Rhodospirillaceae, Bacillus, Vibrio and Pseudomonas were present in greatest abundance. In addition, Corynebacterium was also found in the soil samples. The metagenomic studies of the sugar mill samples demonstrate two important outcomes: firstly that the bagasse leachate, as potentially the most pentose-rich sample tested, had the most complex and diverse bacterial community; and secondly that the pentose-capable isolates that were initially discovered at the beginning of this study, were not amongst the most abundant taxonomic groups discovered in the sugar mill samples, and in fact were, as suspected, very rare. As a bioprospecting exercise, therefore, the study has discovered organisms that are naturally present, but in very small numbers, in the appropriate natural environment. This has implications for the industrial application of E-PUB, in that a seeding process using a starter culture will be necessary for industrial purposes, rather than simply assuming that natural fermentation might occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteriocin-producing lactic acid bacteria and their isolated peptide bacteriocins are of value to control pathogens and spoiling microorganisms in foods and feed. Nisin is the only bacteriocin that is commonly accepted as a food preservative and has a broad spectrum of activity against Gram-positive organisms including spore forming bacteria. In this study nisin induction was studied from two perspectives, induction from inside of the cell and selection of nisin inducible strains with increased nisin induction sensitivity. The results showed that a mutation in the nisin precursor transporter NisT rendered L. lactis incapable of nisin secretion and lead to nisin accumulation inside the cells. Intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin in the cells. Using a nisin sensitive GFP bioassay it could be shown, that the active intracellular nisin could function as an inducer without any detectable release from the cells. The results suggested that nisin can be inserted into the cytoplasmic membrane from inside the cell and activate NisK. This model of two-component regulation may be a general mechanism of how amphiphilic signals activate the histidine kinase sensor and would represent a novel way for a signal transduction pathway to recognize its signal. In addition, nisin induction was studied through the isolation of natural mutants of the GFPuv nisin bioassay strain L. lactis LAC275 using fl uorescence-activated cell sorting (FACS). The isolated mutant strains represent second generation of GFPuv bioassay strains which can allow the detection of nisin at lower levels. The applied aspect of this thesis was focused on the potential of bacteriocins in chicken farming. One aim was to study nisin as a potential growth promoter in chicken feed. Therefore, the lactic acid bacteria of chicken crop and the nisin sensitivity of the isolated strains were tested. It was found that in the crop Lactobacillus reuteri, L. salivarius and L. crispatus were the dominating bacteria and variation in nisin resistance level of these strains was found. This suggested that nisin may be used as growth promoter without wiping out the dominating bacterial species in the crop. As the isolated lactobacilli may serve as bacteria promoting chicken health or reducing zoonoosis and bacteriocin production is one property associated with probiotics, the isolated strains were screened for bacteriocin activity against the pathogen Campylobacter jejuni. The results showed that many of the isolated L. salivarius strains could inhibit the growth of C. jejuni. The bacteriocin of the L. salivarius LAB47 strain, with the strongest activity, was further characterized. Salivaricin 47 is heat-stable and active in pH range 3 to 8, and the molecular mass was estimated to be approximately 3.2 kDa based on tricine SDS-PAGE analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addressing the issue of prosthetic infection, this work demonstrated the synergistic effect of the application of static magnetic field (SMF) and ferrimagnetic substrate properties on the bactericidal property in vitro. This aspect was studied using hydroxyapatite (HA)-xFe(3)O(4) (x=10, 20, and 40 wt.%) substrates, which have different saturation magnetization properties. During bacteria culture experiments, 100 mT SMF was applied to growth medium (with HA-xFe(3)O(4) substrate) in vitro for 30, 120, and 240 min. A combination of MTT assay, membrane rupture assays, live/dead assay, and fluorescence microscopic analysis showed that the bactericidal effect of SMF increases with the exposure duration as well as increasing Fe3O4 content in biomaterial substrates. Importantly, the synergistic bactericidal effect was found to be independent of bacterial cell type, as similar qualitative trend is measured with both gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) strains. The reduction in E. coli viability was 83% higher on HA-40 Wt % Fe3O4 composite after 4 h exposure to SMF as compared to nonexposed control. Interestingly, any statistically significant difference in ROS was not observed in bacterial growth medium after magnetic field exposure, indicating the absence of ROS enhancement due to magnetic field. Overall, this study illustrates significant role being played by magnetic substrate compositions towards bactericidal property than by magnetic field exposure alone. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 524-532, 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os bastonetes Gram positivos irregulares (BGPIs) compõem um grupo de espécies bacterianas com ampla diversidade fenotípica e que podem estar presente no meio ambiente, na microbiota humana e de animais. A identificação acurada de BGPIs em nível de gênero e espécie empregando métodos bioquímicos convencionais é bastante limitada, sendo recomendado, portanto, o uso de técnicas moleculares. No presente estudo, foram identificadas amostras de BGPIs oriundas de espécimes clínicos de humanos, de produtos farmacêuticos e de áreas limpas através da análise de sequencias do gene 16S rRNA e de outros genes conservados (housekeeping genes). Os resultados obtidos pelo sequenciamento dos genes 16S rRNA e rpoB demonstraram C. striatum multi-resistente (MDR) como responsável por surto epidêmico em ambiente hospitalar da cidade do Rio de Janeiro. Quinze cepas de C. striatum foram isoladas em cultura pura a partir de secreção traqueal de pacientes adultos submetidos a procedimentos de entubação endotraqueal. A análise por eletroforese em gel de campo pulsado (PFGE) indicou a presença de quatro perfis moleculares, incluindo dois clones relacionados com cepas MDR (PFGE I e II). Os dados demonstram a predominância de PFGE I entre cepas MDR isoladas de unidades de terapia intensiva e enfermarias cirúrgicas. Uma potencial ligação causal entre a morte e a infecção por C. striatum MDR (PFGE tipos I e II) foi observada em cinco casos. Adicionalmente, acreditamos que este seja o primeiro estudo de identificação de espécies de Nocardia relacionadas com infecções humanas pela análise da sequencia multilocus (MLSA) no Brasil. Diferente dos dados observados na literatura (1970 a 2013) e obtidos pelos testes fenotípicos convencionais, a caracterização molecular de quatro lócus (gyrB-16S-secA1-hsp65) permitiu a identificação das espécies N. nova, N. cyriacigeorgica, N. asiatica e N. exalbida/gamkensis relacionadas com quadros de nocardiose em humanos. Cepas de N. nova isoladas de diferentes materiais clínicos de um único paciente apresentaram padrões de susceptibilidade antimicrobianos idênticos e dois perfis PFGE, indicando a possibilidade de quadros de co-infecção por N. nova em humanos. Em outra etapa da investigação, amostras de BGPIs obtidos de ambientes de salas limpas que não puderam ser identificadas por critérios convencionais foram submetidas a análise da sequência do gene 16S rRNA e caracterizadas 95,83% em nível de gênero e 35,42% em espécies. Para gêneros mais encontrados no estudo, foram analisados os genes rpoB e recA de dezessete cepas de Microbacterium e utilizado o MLSA para a identificação de sete cepas identificadas como Streptomyces. Os ensaios permitiram a identificação de três cepas de Microbacterium e de uma única amostra de Streptomyces ao nível de espécie. A análise da sequencia do gene rpoB também se mostrou eficaz na identificação de espécies de cepas de Corynebacterium. Finalmente, para as cepas ambientais pertencentes à classe Actinobacteria os dados morfológicos, bioquímicos e genotípicos permitiram documentar a cepa 3117BRRJ como representante de uma nova espécie do gênero Nocardioides, para o qual o nome Nocardioides brasiliensis sp. nov. e as cepas 3712BRRJ e 3371BRRJ como representante de um novo gênero e espécie para o qual o nome Guaraldella brasiliensis nov. foi proposto.