996 resultados para Genomic Stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deoxyribonucleic acid (DNA) extraction has considerably evolved since it was initially performed back in 1869. It is the first step required for many of the available downstream applications used in the field of molecular biology. Whole blood samples are one of the main sources used to obtain DNA, and there are many different protocols available to perform nucleic acid extraction on such samples. These methods vary from very basic manual protocols to more sophisticated methods included in automated DNA extraction protocols. Based on the wide range of available options, it would be ideal to determine the ones that perform best in terms of cost-effectiveness and time efficiency. We have reviewed DNA extraction history and the most commonly used methods for DNA extraction from whole blood samples, highlighting their individual advantages and disadvantages. We also searched current scientific literature to find studies comparing different nucleic acid extraction methods, to determine the best available choice. Based on our research, we have determined that there is not enough scientific evidence to support one particular DNA extraction method from whole blood samples. Choosing a suitable method is still a process that requires consideration of many different factors, and more research is needed to validate choices made at facilities around the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a nonlinear excitation controller to improve transient stability, oscillation damping and voltage regulation of the power system. The energy function of the predicted system states is used to obtain the desired flux for the next time step, which in turn is used to obtain a supplementary control input using an inverse filtering method. The inverse filtering technique enables the system to provide an additional input for the excitation system, which forces the system to track the desired flux. Synchronous generator flux saturation model is used in this paper. A single machine infinite bus (SMIB) test system is used to demonstrate the efficacy of the proposed control method using time-domain simulations. The robustness of the controller is assessed under different operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curriculum is always in a state of flux and so often the moves to ‘reform’ it are political rather than pedagogical. So often in these days of accountability we focus on the learner. I want to focus on the teacher in this presentation. As English educators we have to ‘fit’ whatever new policy model comes our way. The Australian curriculum seems to have tried to please every stakeholder in its process and as such has been formed without a single, unifying coherent theoretical basis. How do we challenge this paper tiger? We have to find the pedagogical models within the current framework and see what still works in practice. At the chalk-face there are still teaching, learning and assessment practices in English surviving from the last few decades of pedagogical change; and there is also room for accommodating new practices. Embracing and adapting the old and the new may be the key to staying creative and passionately engaged with our subject area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter presents the stability analysis based on bifurcation theory of the distribution static compensator (DSTATCOM) operating both in current control mode as in voltage control mode. The bifurcation analysis allows delimiting the operating zones of nonlinear power systems and hence the computation of these boundaries is of interest for practical design and planning purposes. Suitable mathematical representations of the DSTATCOM are proposed to carry out the bifurcation analyses efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the Point of Common Coupling (PCC). In addition, the stability regions in the control gain space are computed, and the DC capacitor and AC capacitor impact on the stability are analyzed in detail. It is shown through bifurcation analysis that the loss of stability in the DSTATCOM is in general due to the emergence of oscillatory dynamics. The observations are verified through detailed simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A virtual power system can be interfaced with a physical system to form a power hardware-in-the-loop (PHIL) simulation. In this scheme, the virtual system can be simulated in a fast parallel processor to provide near real-time outputs, which then can be interfaced to a physical hardware that is called the hardware under test (HuT). Stable operation of the entire system, while maintaining acceptable accuracy, is the main challenge of a PHIL simulation. In this paper, after an extended stability analysis for voltage and current type interfaces, some guidelines are provided to have a stable PHIL simulation. The presented analysis have been evaluated by performing several experimental tests using a Real Time Digital Simulator (RTDS™) and a voltage source converter (VSC). The practical test results are consistent with the proposed analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain-based failure criteria have several advantages over stress-based failure criteria: they can account for elastic and inelastic strains, they utilise direct, observables effects instead of inferred effects (strain gauges vs. stress estimates), and model complete stress-strain curves including pre-peak, non-linear elasticity and post-peak strain weakening. In this study, a strain-based failure criterion derived from thermodynamic first principles utilising the concepts of continuum damage mechanics is presented. Furthermore, implementation of this failure criterion into a finite-element simulation is demonstrated and applied to the stability of underground mining coal pillars. In numerical studies, pillar strength is usually expressed in terms of critical stresses or stress-based failure criteria where scaling with pillar width and height is common. Previous publications have employed the finite-element method for pillar stability analysis using stress-based failure criterion such as Mohr-Coulomb and Hoek-Brown or stress-based scalar damage models. A novel constitutive material model, which takes into consideration anisotropy as well as elastic strain and damage as state variables has been developed and is presented in this paper. The damage threshold and its evolution are strain-controlled, and coupling of the state variables is achieved through the damage-induced degradation of the elasticity tensor. This material model is implemented into the finite-element software ABAQUS and can be applied to 3D problems. Initial results show that this new material model is capable of describing the non-linear behaviour of geomaterials commonly observed before peak strength is reached as well as post-peak strain softening. Furthermore, it is demonstrated that the model can account for directional dependency of failure behaviour (i.e. anisotropy) and has the potential to be expanded to environmental controls like temperature or moisture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA may take a leading role in a future generation of blockbuster therapeutics. DNA has inherent advantages over other biomolecules such as protein, RNA and virus-like particles including safety, production simplicity and higher stability at ambient temperatures. Vaccination is the principal measure for preventing influenza and reducing the impact of pandemics; however, vaccines take up to 8-9 months to produce, and the global production capacity is woefully low. With production times as short as 2 weeks, improved safety and stability, bioprocess engineering developments, and the ability to perform numerous therapeutic roles, DNA has the potential to meet the demands of emerging and existing diseases. DNA is experiencing sharp growths in demand as indicated by its use in gene therapy trials and DNA vaccine related patents. Of particular interest for therapeutic use is plasmid DNA (pDNA), a form of non-genomic DNA that makes use of cellular machinery to express proteins or antigens. The production stages of fermentation and downstream purification are considered in this article. Forward looking approaches to purifying and delivering DNA are reported, including affinity chromatography and nasal inhalation. The place that pDNA may take in the preparation for and protection against pandemics is considered. If DNA therapeutics and vaccines prove to be effective, the ultimate scale of production will be huge which shall require associated bioprocess engineering research and development for purification of this large, unique biomolecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predicted secondary structure of sub-genomic RNA in dengue virus defective interfering (D.I.) particles from patients, or generated in vitro, resembled that of the 3′ and 5′ regions of wild type dengue virus (DENV) genomes. While these structures in the sub-genomic RNA were found to be essential for its replication, their nucleotide sequences were not, so long as any new sequences maintained wild type RNA secondary structure. These observations suggested that these sub-genomic fragments of RNA from dengue viruses were replicated in the same manner as the full length genomes of their wild type, “helper”, viruses and that they probably represent the smallest fragments of DENV RNA that can be replicated during a natural infection. While D.I. particles containing sub-genomic RNA are completely parasitic, the relationship between wild type and D.I. DENV may be symbiotic, with the D.I. particles enhancing the transmission of infectious DENV.