975 resultados para Gene age
Resumo:
Background: CAH patients have an increased risk of cardiovascular disease, and it remains unknown if lifelong glucocorticoid (GC) treatment is a contributing factor. In the general population, glucocorticoid receptor gene (NR3C1) polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of CAH patients. Methodology: Sixty-eight adult patients (34SV/34SW) with a mean age of 28.4 +/- 9 years received dexamethasone (mean 0.27 +/- 0.11 mg/day) to obtain normal androgen levels. SW patients also received fludrocortisone (50 mu g/day). Metabolic syndrome (MetS) was defined by the NCEP ATPIII criteria and obesity by BMI >= 30 kg/m(2). NR3C1 alleles were genotyped, and association analyses with phenotype were carried out with Chi-square, t-test and regression analysis. Results: Obesity and MetS were observed in 23.5% and 7.3% of patients, respectively, and were not correlated with GC doses and treatment duration. BMI was positively correlated with blood pressure (BP), triglycerides (TG), LDL-c levels and HOMA-IR and inversely correlated with HDL-c levels. BclI and A3669G variants were found in 26.4% and 9.6% of alleles, respectively. Heterozygotes for the BclI polymorphism presented with higher BMI (29 kg/m(2) +/- 5.3 vs. 26 kg/m(2) +/- 5.3, respectively) and waist circumference (89 cm +/- 12.7 vs. 81 cm +/- 13, respectively) compared to wild-type subjects. Hypertension was found in 12% of patients and heterozygotes for the BclI polymorphism presented higher systolic BP than wild type subjects. Low HDL-c and high TG levels were identified in 30% and 10% of patients, respectively, and were not associated with the NR3C1 polymorphisms. A3669G carriers and non-carriers did not differ. Conclusion: In addition to GC therapy, the BclI GR variant might play an important role in obesity susceptibility in CAH patients. Genotyping of GR polymorphisms could result in the identification of a subgroup at risk patients, allowing for the establishment of personalized treatment and the avoidance of long-term adverse consequences.
Resumo:
The present study aimed to investigate the association of endothelial nitric oxide synthase (eNOS) gene polymorphisms with primary open angle glaucoma (POAG). We conducted a case-control study that included 90 patients with POAG and 127 healthy controls whose blood samples were genotyped for the functional polymorphisms T-786C and Glu298Asp of the eNOS gene by Taqman fluorescent allelic discrimination assay. The T-786C polymorphism was significantly associated as a risk factor for POAG among women (OR: 228; 95% CI: 1.11 to 4.70, p = 0.024) and marginally associated to the risk of POAG in the patients >= 52 years of age at diagnosis (OR: 2.11; 95% CI: 0.98 to 4.55, p = 0,055). However, these results was not confirmed after adjustments for gender, age, self-declared skin color, tobacco smoking and eNOS genotypes by multivariate logistic regression model (OR: 2.08; 95% CI: 0.87 to 5.01, p = 0.101 and OR: 2.20; 95% CI: 0.95 to 5.12, p = 0.067, respectively). The haplotype CG of T-786C and Glu298Asp showed a borderline association with risk of POAG in the overall analysis (OR: 1.76; 95% CI: 0.98 to 3.14, p = 0.055) and among women (OR: 2.02; 95% CI: 0.98 to 4.16, p = 0.052). Furthermore, the CG haplotype was significantly associated with the development of POAG for the age at diagnosis group >= 52 years (OR: 3.48; 95% CI: 1.54 to 7.84, p = 0.002). We suggested that haplotypes of the polymorphisms T-786C and Glu298Asp of eNOS may interact with gender and age in modulating the risk of POAG. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Recent researches have investigated the factors that determine the maternal risk for Down syndrome (DS) in young woman. In this context, some studies have demonstrated the association between polymorphisms in genes involved on folate metabolism and the maternal risk for DS. These polymorphisms may result in abnormal folate metabolism and methyl deficiency, which is associated with aberrant chromosome segregation leading to trisomy 21. In this study, we analyzed the influence of the polymorphism C1420T in Serine hydroxymethyltransferase (SHMT) gene on maternal risk for DS and on metabolites concentrations of the folate pathway (serum folate and plasma homocysteine and methylmalonic acid). The study group was composed by 105 mothers with DS children (case group) and 185 mothers who had no children with DS (control group). The genotype distribution did not show significant statistical difference between case and control mothers (P = 0.24) however a protective effect between genotypes CC (P = 0.0002) and CT (P < 0.0001) and maternal risk for DS was observed. Furthermore, the SHMT C1420T polymorphism (rs1979277) does not affect the concentration of metabolites of folate pathway in our DS mothers. In conclusion, our data showed a protective role for the genotypes SHMT CC and CT on maternal risk for DS. The concentrations of metabolites of folate pathway did not differ significantly between the genotypes SHMT.
Resumo:
Background: Cholesteryl ester transfer protein (CETP) plays a major role in lipid metabolism, but studies on the association of CETP polymorphisms with risks of cardiovascular disease are inconsistent. This study investigated whether the CETP gene I405V and Taq1B polymorphisms modified subclinical atherosclerosis in an asymptomatic Brazilian population sample. Methods: The polymorphisms were analyzed using polymerase chain reaction in 207 adult volunteers. Serum lipid profiles, oxLDL Ab titers, C-reactive protein and tumor necrosis factor-a concentrations and CETP and phospholipid transfer protein (PLTP) activities were determined, and common carotid artery intima-media thickness (cIMT) was measured using ultrasonography. Results: No differences in cIMT were observed between the presence or absence of the minor B2 and V alleles in either polymorphism. However, inverse correlations between mean cIMT and CETP activity in the presence of these polymorphisms were observed, and positive correlations of these polymorphisms with PLTP activity and oxLDL Ab titers were identified. Moreover, logistic multivariate analysis revealed that the presence of the B2 allele was associated with a 5.1-fold (CI 95%, OR: 1.26 - 21.06) increased risk for cIMT, which was equal and above the 66th percentile and positively interacted with age. However, no associations with the V allele or CETP and PLTP activities were observed. Conclusions: None of the studied parameters, including CETP activity, explained the different relationships between these polymorphisms and cIMT, suggesting that other non-determined factors were affected by the genotypes and related to carotid atherosclerotic disease.
Resumo:
Introduction: Vitamin D is responsible for the regulation of certain genes at the transcription level, via interaction with the vitamin D receptor, and influences host immune responses and aspects of bone development, growth, and homeostasis. Our aim was to investigate the association of TaqI vitamin D receptor gene polymorphism with external apical root resorption during orthodontic treatment. Methods: Our subjects were 377 patients with Class II Division 1 malocclusion, divided into 3 groups: (1) 160 with external apical root resorption <= 1.43 mm, (2) 179 with external apical root resorption >1.43 mm), and (3) 38 untreated subjects. External apical root resorption of the maxillary incisors was evaluated on periapical radiographs taken before and after 6 months of treatment. After DNA collection and purification, vitamin D receptor TaqI polymorphism analysis was performed by polymerase chain reaction-restriction fragment length polymorphism. Univariate and multivariate analyses were performed to verify the association of clinical and genetic variables with external apical root resorption (P <0.05). Results: There was a higher proportion of external apical root resorption in orthodontically treated patients compared with the untreated subjects. In patients orthodontically treated, age higher than 14 years old, initial size of the maxillary incisor root superior to 30 mm, and premolar extraction were associated with increased external apical root resorption. Genotypes containing the C allele were weakly associated with protection against external apical root resorption (CC + CT x TT [odds ratio, 0.29; 95% confidence interval, 0.07-1.23; P = 0.091]) when treated orthodontic patients were compared to untreated individuals. Conclusions: Clinical factors and vitamin D receptor TaqI polymorphism were associated with external apical root resorption in orthodontic patients. (Am J Orthod Dentofacial Orthop 2012; 142: 339-47)
Resumo:
Cryptosporidium parvum infection is very important with respect to public health, owing to foodborne and waterborne outbreaks and gastrointestinal illness in immunocompetent and immunocompromised persons. In cattle, infection with this species manifests either as a subclinical disease or with diarrheal illness, which occurs more often in the presence of other infectious agents than when alone. The aim of this study was to develop a real-time polymerase chain reaction (PCR) assay for the detection of C. parvum in calf fecal samples and to compare the results of this assay with those of the method routinely used for the diagnosis of Cryptosporidium spp., nested PCR targeting the 18S rRNA gene. Two hundred and nine fecal samples from calves ranging in age from 1 day to 6 months were examined using real-time PCR specific for the actin gene of C. parvum and by a nested PCR targeting the 18S rRNA gene of Cryptosporidium spp. Using real-time PCR detection, 73.2% (153 out of 209) of the samples were positive for C. parvum, while 56.5% (118 out of 209) of the samples were positive for Cryptosporidium spp. when the nested PCR amplification method was used for the detection. The analytical sensitivity of the real-time PCR was approximately one C. parvum oocyst. There was no significant nonspecific DNA amplification of any of the following species and genotype: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium bovis, Cryptosporidium canis, Cryptosporidium galli, Cryptosporidium ryanae, Cryptosporidium serpentis, or avian genotype II. Thus, we conclude that real-time PCR targeting the actin gene is a sensitive and specific method for the detection of C. parvum in calf fecal samples.
Resumo:
Abstract Background The association of balanced rearrangements with breakpoints near SOX9 [SRY (sex determining region Y)-box 9] with skeletal abnormalities has been ascribed to the presumptive altering of SOX9 expression by the direct disruption of regulatory elements, their separation from SOX9 or the effect of juxtaposed sequences. Case presentation We report on two sporadic apparently balanced translocations, t(7;17)(p13;q24) and t(17;20)(q24.3;q11.2), whose carriers have skeletal abnormalities that led to the diagnosis of acampomelic campomelic dysplasia (ACD; MIM 114290). No pathogenic chromosomal imbalances were detected by a-CGH. The chromosome 17 breakpoints were mapped, respectively, 917–855 kb and 601–585 kb upstream of the SOX9 gene. A distal cluster of balanced rearrangements breakpoints on chromosome 17 associated with SOX9-related skeletal disorders has been mapped to a segment 932–789 kb upstream of SOX9. In this cluster, the breakpoint of the herein described t(17;20) is the most telomeric to SOX9, thus allowing the redefining of the telomeric boundary of the distal breakpoint cluster region related to skeletal disorders to 601–585 kb upstream of SOX9. Although both patients have skeletal abnormalities, the t(7;17) carrier presents with relatively mild clinical features, whereas the t(17;20) was detected in a boy with severe broncheomalacia, depending on mechanical ventilation. Balanced and unbalanced rearrangements associated with disorders of sex determination led to the mapping of a regulatory region of SOX9 function on testicular differentiation to a 517–595 kb interval upstream of SOX9, in addition to TESCO (Testis-specific enhancer of SOX9 core). As the carrier of t(17;20) has an XY sex-chromosome constitution and normal male development for his age, the segment of chromosome 17 distal to the translocation breakpoint should contain the regulatory elements for normal testis development. Conclusions These two novel translocations illustrate the clinical variability in carriers of balanced translocations with breakpoints near SOX9. The translocation t(17;20) breakpoint provides further evidence for an additional testis-specific SOX9 enhancer 517 to 595 kb upstream of the SOX9 gene.
Resumo:
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases
Resumo:
Gastroesophageal junction (GEJ) adenocarcinoma are uncommon before age of 40 years. While certain clinical, pathological and molecular features of GEJ adenocarcinoma in older patients have been extensively studied, these characteristics in the younger population remain to be determined. In the recent literature, a high sensitivity and specificity for the detection of dysplasia and esophageal adenocarcinoma was demonstrated by using multicolor fluorescence in situ hybridization (FISH) DNA probe set specific for the locus specific regions 9p21 (p16), 20q13.2 and Y chromosome. We evaluated 663 patients with GEJ adenocarcinoma and further divided them into 2 age-groups of
Resumo:
Familial cutaneous mastocytosis is an exceptional condition of unknown etiology. In this study we report the largest series of patients with familial cutaneous mastocytosis without other manifestations (18 affected subjects from seven unrelated families), and we investigate the role of germ-line KIT mutations in the pathogenesis of the disease. The mean age at onset was 5.4 years (range from birth to 22 years), and the clinical behavior was variable over a mean follow up period of 15.1 years (range 2-36): improvement in seven, stability in eight and worsening in the remaining three patients. The pattern of inheritance was compatible with an autosomal dominant trait with incomplete penetrance; a female preponderance (14 females vs 4 males, ratio 3.5:1) was noted; among the six women who have been pregnant at least once, three experienced important clinical changes during pregnancy. No germ-line mutation was found in the exons 10, 11, and 17 of the KIT proto-oncogene, which are the most commonly mutated exons in sporadic mastocytosis. However, in the majority of affected subjects we found the Met541Leu polymorphic variant of the KIT gene, which seems to confer a growth advantage to mast cells in vitro. This observation further suggests that the Met541Leu may be a predisposing factor of cutaneous mastocytosis, although it seems to be neither necessary nor sufficient for the development of the disease.
Resumo:
Context and Objective: Main features of the autosomal dominant form of GH deficiency (IGHD II) include markedly reduced secretion of GH combined with low concentrations of IGF-I leading to short stature. Design, Setting, and Patients: A female patient presented with short stature (height -6.0 sd score) and a delayed bone age of 2 yr at the chronological age of 5 yr. Later, at the age of 9 yr, GHD was confirmed by standard GH provocation test, which revealed subnormal concentrations of GH and a very low IGF-I. Genetic analysis of the GH-1 gene revealed the presence of a heterozygous R178H mutation. Interventions and Results: AtT-20 cells coexpressing both wt-GH and GH-R178H showed a reduced GH secretion after forskolin stimulation compared with the cells expressing only wt-GH, supporting the diagnosis of IGHD II. Because reduced GH concentrations found in the circulation of our untreated patient could not totally explain her severe short stature, functional characterization of the GH-R178H performed by studies of GH receptor binding and activation of the Janus kinase-2/signal transducer and activator of transcription-5 pathway revealed a reduced binding affinity of GH-R178H for GH receptor and signaling compared with the wt-GH. Conclusion: This is the first report of a patient suffering from short stature caused by a GH-1 gene alteration affecting not only GH secretion (IGHD II) but also GH binding and signaling, highlighting the necessity of functional analysis of any GH variant, even in the alleged situation of IGHD II.
Resumo:
PURPOSE: The cyclin D1 (CCND1) A870G gene polymorphism is linked to the outcome in patients with resectable non-small cell lung cancer (NSCLC). Here, we investigated the impact of this polymorphism on smoking-induced cancer risk and clinical outcome in patients with NSCLC stages I-IV. METHODS: CCND1 A870G genotype was determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP) of DNA extracted from blood. The study included 244 NSCLC patients and 187 healthy control subjects. RESULTS: Patient characteristics were: 70% male, 77% smokers, 43% adenocarcinoma, and 27% squamous cell carcinoma. Eighty-one percent of the patients had stages III-IV disease. Median age at diagnosis was 60 years and median survival was 13 months. Genotype frequencies of patients and controls both conformed to the Hardy Weinberg equilibrium. The GG genotype significantly correlated with a history of heavy smoking (>or=40 py, P=0.02), and patients with this genotype had a significantly higher cigarette consumption than patients with AA/AG genotypes (P=0.007). The GG genotype also significantly correlated with tumor response or stabilization after a platinum-based first-line chemotherapy (P=0.04). Survival analysis revealed no significant differences among the genotypes. CONCLUSION: Evidence was obtained that the CCND1 A870G gene polymorphism modulates smoking-induced lung cancer risk. Further studies are required to explore the underlying molecular mechanisms and to test the value of this gene polymorphism as a predictor for platinum-sensitivity in NSCLC patients.
Resumo:
BACKGROUND: Interleukin-1 gene polymorphism (IL-1 gene) has been associated with periodontitis. The present study examined the subgingival microbiota by IL-1 gene status in subjects undergoing supportive periodontal therapy (SPT). METHODS: A total of 151 subjects with known IL-1 gene status (IL-1A +4845/IL-1B -3954) (IL-1 gene) were included in this study. Clinical data and subgingival plaque samples (40 taxa) were collected. These taxa were determined by the checkerboard DNA-DNA hybridization method. RESULTS: Gender, smoking habits (n-par tests), age, and clinical periodontal conditions did not differ by IL-1 gene status. IL-1 gene-negative subjects had a higher total bacterial load (mean difference, 480.4 x 10(5); 95% confidence interval [CI], 77 to 884 x 10(5); P <0.02). The levels of Actinobacillus actinomycetemcomitans (mean difference, 30.7 x 10(5); 95% CI, 2.2 to 59.5 x 10(5); P <0.05), Eubacterium nodatum (mean difference, 4.2 x 10(5); 95% CI, 0.6 to 7.8 x 10(5); P <0.02), Porphyromonas gingivalis (mean difference, 17.9 x 10(5); 95% CI, 1.2 to 34.5 x 10(5); P <0.05), and Streptococcus anginosus (mean difference, 4.0 x 10(5); 95% CI, 0.2 to 7.2 x 10(5); P <0.05) were higher in IL-1 gene-negative subjects, an observation specifically found at sites with probing depths <5.0 mm. CONCLUSIONS: Bleeding on probing did not differ by IL gene status, reflecting clinical SPT efficacy. IL-1 gene-negative subjects had higher levels of periodontal pathogens. This may suggest that among subjects undergoing SPT, a lower bacterial load is required in IL-1 gene-positive subjects to develop the same level of periodontitis as in IL-1 gene-negative subjects.
Resumo:
Clinical resistance to chemotherapy in acute myeloid leukemia (AML) is associated with the expression of the multidrug resistance (MDR) proteins P-glycoprotein, encoded by the MDR1/ABCB1 gene, multidrug resistant-related protein (MRP/ABCC1), the lung resistance-related protein (LRP), or major vault protein (MVP), and the breast cancer resistance protein (BCRP/ABCG2). The clinical value of MDR1, MRP1, LRP/MVP, and BCRP messenger RNA (mRNA) expression was prospectively studied in 154 newly diagnosed AML patients >or=60 years who were treated in a multicenter, randomized phase 3 trial. Expression of MDR1 and BCRP showed a negative whereas MRP1 and LRP showed a positive correlation with high white blood cell count (respectively, p < 0.05, p < 0.001, p < 0.001 and p < 0.001). Higher BCRP mRNA was associated with secondary AML (p < 0.05). MDR1 and BCRP mRNA were highly significantly associated (p < 0.001), as were MRP1 and LRP mRNA (p < 0.001) expression. Univariate regression analyses revealed that CD34 expression, increasing MDR1 mRNA as well as MDR1/BCRP coexpression, were associated with a lower complete response (CR) rate and with worse event-free survival and overall survival. When adjusted for other prognostic actors, only CD34-related MDR1/BCRP coexpression remained significantly associated with a lower CR rate (p = 0.03), thereby identifying a clinically resistant subgroup of elderly AML patients.
Functional polymorphism in ABCA1 influences age of symptom onset in coronary artery disease patients
Resumo:
ATP-binding-cassette-transporter-A1 (ABCA1) plays a pivotal role in intracellular cholesterol removal, exerting a protective effect against atherosclerosis. ABCA1 gene severe mutations underlie Tangier disease, a rare Mendelian disorder that can lead to premature coronary artery disease (CAD), with age of CAD onset being two decades earlier in mutant homozygotes and one decade earlier in heterozygotes than in mutation non-carriers. It is unknown whether common polymorphisms in ABCA1 could influence age of symptom onset of CAD in the general population. We examined common promoter and non-synonymous coding polymorphisms in relation to age of symptom onset in a group of CAD patients (n = 1164), and also carried out in vitro assays to test effects of the promoter variations on ABCA1 promoter transcriptional activity and effects of the coding variations on ABCA1 function in mediating cellular cholesterol efflux. Age of symptom onset was found to be associated with the promoter - 407G > C polymorphism, being 2.82 years higher in C allele homozygotes than in G allele homozygotes and intermediate in heterozygotes (61.54, 59.79 and 58.72 years, respectively; P = 0.002). In agreement, patients carrying ABCA1 haplotypes containing the -407C allele had higher age of symptom onset. Patients of the G/G or G/C genotype of the -407G > C polymorphism had significant coronary artery stenosis (>75%) at a younger age than those of the C/C genotype (P = 0.003). Reporter gene assays showed that ABCA1 haplotypes bearing the -407C allele had higher promoter activity than haplotypes with the -407G allele. Functional analyses of the coding polymorphisms showed an effect of the V825I substitution on ABCA1 function, with the 825I variant having higher activity in mediating cholesterol efflux than the wild-type (825V). A trend towards higher symptom onset age in 825I allele carriers was observed. The data indicate an influence of common ABCA1 functional polymorphisms on age of symptom onset in CAD patients.