836 resultados para Games of chance (Mathematics)
Resumo:
Hypercube is one of the most popular topologies for connecting processors in multicomputer systems. In this paper we address the maximum order of a connected component in a faulty cube. The results established include several known conclusions as special cases. We conclude that the hypercube structure is resilient as it includes a large connected component in the presence of large number of faulty vertices.
Resumo:
An n-dimensional Mobius cube, 0MQ(n) or 1MQ(n), is a variation of n-dimensional cube Q(n) which possesses many attractive properties such as significantly smaller communication delay and stronger graph-embedding capabilities. In some practical situations, the fault tolerance of a distributed memory multiprocessor system can be measured more precisely by the connectivity of the underlying graph under forbidden fault set models. This article addresses the connectivity of 0MQ(n)/1MQ(n), under two typical forbidden fault set models. We first prove that the connectivity of 0MQ(n)/1MQ(n) is 2n - 2 when the fault set does not contain the neighborhood of any vertex as a subset. We then prove that the connectivity of 0MQ(n)/1MQ(n) is 3n - 5 provided that the neighborhood of any vertex as well as that of any edge cannot fail simultaneously These results demonstrate that 0MQ(n)/1MQ(n) has the same connectivity as Q(n) under either of the previous assumptions.
Resumo:
In order to make a full evaluation of an interconnection network, it is essential to estimate the minimum size of a largest connected component of this network provided the faulty vertices in the network may break its connectedness. Star graphs are recognized as promising candidates for interconnection networks. This article addresses the size of a largest connected component of a faulty star graph. We prove that, in an n-star graph (n >= 3) with up to 2n-4 faulty vertices, all fault-free vertices but at most two form a connected component. Moreover, all fault-free vertices but exactly two form a connected component if and only if the set of all faulty vertices is equal to the neighbourhood of a pair of fault-free adjacent vertices. These results show that star graphs exhibit excellent fault-tolerant abilities in the sense that there exists a large functional network in a faulty star graph.
Resumo:
A finite-difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow-water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gasdynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. An extension to the two-dimensional equations with source terms, is included. The scheme is applied to a dam-break problem with cylindrical symmetry.
Resumo:
The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh–Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413–443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.
Resumo:
Teaching mathematics to students in the biological sciences is often fraught with difficulty. Students often discover mathematics to be a very 'dry' subject in which it is difficult to see the motivation of learning it given its often abstract application. In this paper I advocate the use of mathematical modelling as a method for engaging students in understanding the use of mathematics in helping to solve problems in the Biological Sciences. The concept of mathematics as a laboratory tool is introduced and the importance of presenting students with relevant, real-world examples of applying mathematics in the Biological Sciences is discussed.
Resumo:
Theorem-proving is a one-player game. The history of computer programs being the players goes back to 1956 and the ‘LT’ LOGIC THEORY MACHINE of Newell, Shaw and Simon. In game-playing terms, the ‘initial position’ is the core set of axioms chosen for the particular logic and the ‘moves’ are the rules of inference. Now, the Univalent Foundations Program at IAS Princeton and the resulting ‘HoTT’ book on Homotopy Type Theory have demonstrated the success of a new kind of experimental mathematics using computer theorem proving.
Resumo:
Multicellularity evolved well before 600 million years ago, and all multicellular animals have evolved since then with the need to protect against pathogens. There is no reason to expect their immune systems to be any less sophisticated than ours. The vertebrate system, based on rearranging immunoglobulin-superfamily domains, appears to have evolved partly as a result of chance insertion of RAG genes by horizontal transfer. Remarkably sophisticated systems for expansion of immunological repertoire have evolved in parallel in many groups of organisms. Vaccination of invertebrates against commercially important pathogens has been empirically successful, and suggests that the definition of an adaptive and innate immune system should no longer depend on the presence of memory and specificity, since these terms are hard to define in themselves. The evolution of randomly-created immunological repertoire also carries with it the potential for generating autoreactive specificities and consequent autoimmune damage.While invertebrates may use systems analogous to ours to control autoreactive specificities, they may have evolved alternative mechanisms which operate either at the level of individuals-within-populations rather than cells-within-individuals, by linking self-reactive specificities to regulatory pathways and non-self-reactive to effector pathways.
Resumo:
We consider the two-dimensional Helmholtz equation with constant coefficients on a domain with piecewise analytic boundary, modelling the scattering of acoustic waves at a sound-soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin approach with plane wave basis functions on meshes with very general element shapes, geometrically graded towards domain corners. We prove exponential convergence of the discrete solution in terms of number of unknowns.