969 resultados para Fast heavy ion


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single crystals of alpha-alumina were irradiated at room temperature with 1.157 (GeVFe)-Fe-56, 1.755 (GeVXe)-Xe-136 and 2.636 (GeVU)-U-238 ions to fluences range from 8.7 x 10(9) to 6 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet visible absorption measurements. The investigation reveals the presence of various color centers (F, F+, F-2(2+), F-2(+) and F-2 centers) appearing in the irradiated samples. It is found that the ratio of peak absorbance of F-2 to F centers increases with the increase of the atomic numbers of the incident ions from Fe, Xe to U ions, so do the absorbance ratio of F-2(2+) to F+ centers and of large defect cluster to F centers, indicating that larger defect clusters are preferred to be produced under heavier ion irradiation. Largest color center production cross-section was found for the U ion irradiation. The number density of single anion vacancy scales better with the energy deposition through processes of nuclear stopping, indicating that the nuclear energy loss processes determines the production of F-type defects in heavy ion irradiated alpha-alumina.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single crystal sapphire (Al2O3) samples implanted with 110 keV He and irradiated at 320 K by Pb-208(27), ions with energy of 1.1 MeV/u to the fluences ranging from 1 X 10(12) to 5 X 10(14) ion/cm(2) and subsequently annealed at 600, 900 and 1100 K. The obtained PL spectra showed that emission peaks centred at 375, 390, 413, and 450 nm appeared in irradiated samples. The peak of 390 ran became very intense after 600 K annealing. The peak of 390 nm weakened and 510 nm peak started to build up at 900 K annealing, the peak of 390 nm vanished and 510 nm peak increased with the annealing temperature rising to 1100 K. Infrared spectra showed a broadening of the absorption band between 460 cm(-1), and 510 cm(-1) indicating strongly damaged regions being formed in the Al2O3 samples and position shift of the absorption band at 1000-1300 cm(-1) towards higher wavenumber after Pb irradiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C6+ ion or Co-60 gamma-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of C-12(6+) ion calculated with respect to Co-60 gamma-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of C-12(6+) ion or Co-60 gamma-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biophysical characteristics of heavy ions make them a rational source of radiation for use in radiotherapy of malignant tumours. Prior to radiotherapy treatment, a therapeutic regimen must be precisely defined, and during this stage information on individual patient radiosensitivity would be of very great medical value. There are various methods to predict radiosensitivity, but some shortfalls are difficult to avoid. The present study investigated the induction of chromatid breaks in five different cell lines, including one normal liver cell line (L02), exposed to carbon ions accelerated by the heavy ion research facility in Lanzhou (HIRFL), using chemically induced premature chromosome condensation (PCC). Previous studies have reported the number of chromatid breaks to be linearly related to the radiation dose, but the relationship between cell survival and chromatid breaks is not clear. The major result of the present study is that cellular radiosensitivity, as measured by D-0, is linearly correlated with the frequency of chromatid breaks per Gy in these five cell lines. We propose that PCC may be applied to predict radiosensitivity of tumour cells exposed to heavy ions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For the first time the physical properties of therapeutic carbon-ion beam supplied by, the shallow-seated tumor therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL) are measured. For a 80.55MeV/u C-12 ion beam delivered to the therapy terminal, the homogeneity of irradiation fields is 73.48%, when the beam intensity varied in the range of 0.001-0.1nA (i.e. 1 X 10(6) - 1 X 10(8) particles per second). The stability of the beam intensity within a few minutes is estimated to be 80.87%. The depth-dose distribution of the beam at the isocenter of the therapy facility is measured, and the position of the high-dose Bragg peak is found to be located at the water-equivalent depth of 13.866mm. Based on the relationship between beam energy and Bragg peak position, the corresponding beam energy at the isocenter of the therapy terminal is evaluated to be 71.71MeV/u for the original 80.55MeV/u C-12 ion beam, which consisted basically with calculation. The readout of the previously-used air-free ionization chamber regarding absorbed dose is calibrated as well in this experiment. The results indicate that the performance of the therapy facility should be optimized further to meet the requirements of clinical trial.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion in the Bragg peak or the plateau region. At 10th day after irradiation, ovarian and uterine weights were measured: normal and atretic (identified with the oocyte to be degenerating or absent) primordial, primary and preantral follicles were identified in the largest cross-section of each ovary. Percentage (%) of normal follicles of each developmental stage of oogenesis was calculated. The data showed that compared to controls, there was a dose-related decrease in percentage of normal follicles in each developmental stage. And the weights of ovary and uterus were also reduced with doses of irradiation. Moreover, these effects were much more significant in the Bragg peak region and the region close to the Bragg peak than in the beam's entrance (the plateau region). Radiosensitivity varied in different follicle maturation stages. Primordial follicles, which are thought to be extremely sensitive to ionizing irradiation, were reduced by 86.6%, while primary and preantral follicles reduced only by 72.5% and 61.8% respectively, by exposure with 6 Gy of C-12(6+) ion in the Bragg peak region and the region close to the Bragg peak. The data suggested that due to their optimal depth-dose distribution in the Bragg peak region, heavy ions are ones of the best particles for radiotherapy of tumors located next of vital organs or/and surrounded by normal tissues, especially radiosensitive tissues such as gonads.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)](y) and [Fe(3 nm)/Al(x)](y) with x ranging between 1 and 10 mn, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of Pb-208, Xe-132 and Kr-84 ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work the photoluminescence (PL) character of sapphire implanted with 110-keV He, Ar or Ne ions and subsequently irradiated with 230-MeV Pb was studied. The implantation was performed at 320 and 600 K using fluences from 5.0 x 10(16) to 2.0 x 10(17) ions/cm(2). The Pb ion irradiation was carried out at 320 K. The obtained PL spectra showed peaks at 375, 413 and 450 nm with maximum intensity at an implantation fluence of 5.0 x 10(16) ions/cm(2) and a new peak at 390 nm appeared in the He-implanted and subsequently Pb-irradiated samples. Infrared spectra showed a broadening of the absorption band between 460 and 510 nm indicating strongly damaged regions formed in the Al2O3 samples. A possible PL mechanism is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To explore the potential of double irradiation source, radioactive C-9-ion beam, in tumor therapy, a comparative study oil the surviving effect of human salivary gland cells at different penetration depths between C-9 and C-12-ion beams has been carried out. The 9C-ion C beam, especially at the distal side of the beam came out more efficient in cell killing at the depths around its Bragg peak than the 12 Bragg peak. Compared to the C-12 beam, an increase in RBE by a factor of up to 2.13 has been observed at the depths distal to the Bragg peak of the 9C beam. The 9C beam showed an enhanced biological effect at the penetration depths around its Bragg peak, corresponding to the stopping region of the incident C-9-ions and where the delayed low-energy particles were emitted. Further analysis revealed that cell lethality by the emitted particles from the stopping C-9-ions is responsible for the excessive biological effect at the penetration depths around the Bragg peak of the C-9 beam.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The beta(+)/EC decay of doubly odd Ir-176 has been investigated using Nd-146(Cl-35, 5n gamma)Ir-176 heavy ion fusion evaporation reaction at 210MeV bombarding energy. With the aid of a helium-jet recoil fast tape transport system, the reaction products were transported to a low-background location for measurements. Based on the data analysis, the previously published gamma rays in Ir-176 decay were proved, moreover, 3 new levels and 10 new gamma rays were assigned to Ir-176 decay. The new level scheme of Os-176 with low excitation energy has been established. The time spectra of typical gamma rays clearly indicate a long-lived low-spin isomer in Ir-176 nuclide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the commissioning of the Cooler Storage Ring at the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR), a pilot experiment operating the CSRe in isochronous mode to test the power of HIRFL-CSR for measuring the mass of the short-lived nucleus was performed in December of 2007. The transition point gamma t of CSRe in isochronous mode is 1.395 which corresponds to the energy about 368 MeV/u for the ions with atomic number-to-charge ratio A/q = 2. The fragments with A/q = 2 of Ar-36 were injected into CSRe and their revolution frequencies were measured with a fast time pick-up detector with a thin foil in the circulating path of the ions. A mass resolution of better than 105 for m/Delta m was achieved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Heavy Ion Research Facility and Cooling Storage Ring (HIRFL-CSR) accelerator in Lanzhou offers a unique possibility for the generation of high density and short pulse heavy ion beams by non-adiabatic bunch compression longitudinally, which is implemented by a fast jump of the RF-voltage amplitude. For this purpose, an RF cavity with high electric field gradient loaded with Magnetic Alloy cores has been developed. The results show that the resonant frequency range of the single-gap RF cavity is from 1.13 MHz to 1.42 MHz, and a maximum RF voltage of 40 kV with a total length of 100 cm can be obtained, which can be used to compress heavy ion beams of U-238(72+) with 250 MeV/u from the initial bunch length of 200 ns to 50 ns with the coaction of the two single-gap RF cavity mentioned above.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For radiation protection purposes, the neutron dose in carbon ion radiation therapy at the HIRFL (Heavy Ion Research Facility in Lanzhou) was investigated. The neutron dose from primary C-12 ions with a specific energy of 100 MeV/u delivered from SSC was roughly measured with a standard Anderson-Broun rem-meter using a polyethylene target at various distances. The result shows that a maximum neutron dose contribution of 19 mSv in a typically surface tumor treatment was obtained, which is less than 1% of the planed heavy ion dose and is in reasonable agreement with other reports. Also the gamma-ray dose was measured in this experiment using a thermo luminescent detector.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e mu A of Xe37+, 1 e mu A of Xe43+, and 0.16 e mu A of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e mu A of Bi31+, 22 e mu A of Bi41+, and 1.5 e mu A of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e mu A of Xe-129(43+), 22 e mu A of Bi-209(41+), and 1.5 e mu A of Bi-209(50+). To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e mu A of Xe-129(27+) and 152 e mu A of Xe-129(30+), although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and Xe-129(27+), Kr-78(19+), Bi-209(31+), and Ni-58(19+) beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development of SECRAL will be presented.