459 resultados para Exo-biopolymer
Resumo:
The aim of this study was to evaluate the effect of edible coatings based on methylcellulose (MC) and cassava starch (CS) to reduce oil uptake and improve water retention of chicken nuggets during deep fat frying. Edible coatings were prepared with I g of MC/100 g solution and 4 g of CS/100 g solution, with 25 or 55 g glycerol/100 g biopolymer. These solutions were applied to nugget samples before battering. Pre-fried and fried nuggets were analyzed to determine lipid and water contents. Color and texture were also measured in the fried nuggets. In general, there was no effect of the two concentrations of plasticizer of either of the biopolymers on the water retention of whole nuggets. But, higher oil uptake reduction, and consequently, lower lipid content was observed on nuggets coated with CS and 25% plasticizer. The coated samples were darker and had a brighter yellow color when compared with the control. There was also a significant decrease in the shearing force of the fried coated samples, indicating reduced hardness of these samples.
Resumo:
The aim of this study was to evaluate the effects of the addition of surfactants sodium stearoyl lactate (SSL) and sucrose ester (SE) on the functional properties of films produced with polysaccharides mixtures (methylcellulose/glucomannan/pectin in 1/4/1 ratio, respectively) and gelatin. The films were produced by the casting method and characterized for their water vapor permeability (WVP), mechanical (tensile strength and elongation to break point), morphological and optical properties. Films with low WVP were obtained with surfactants. Addition of SE to the films with polysaccharide/gelatin ratio of 90/10 showed improved mechanical properties. Films presented smooth surfaces with micro voids and lumpiness, depending on the surfactant tested. Surfactants increased the opacity of the films by a factor of 1-3%. All film properties were dependent on the surfactant affinity for the biopolymer matrix. SE presented more affinity for biopolymer matrix containing high polysaccharide proportion, and SSL presented more affinity for polymer matrix containing high gelatin proportion. The addition of surfactants decreased the water vapor permeability of the films, increasing their hydrophobic character.
Resumo:
The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space Agency ESA. CoRoT observed since its launch in December 27, 2006 about 100 000 stars for the exoplanet channel, during 150 days uninterrupted high-precision photometry. Since the The CoRoT-team has several exoplanet candidates which are currently analyzed under its study, we report here the discoveries of nine exoplanets which were observed by CoRoT. Discovered exoplanets such as CoRoT-3b populate the brown dwarf desert and close the gap of measured physical properties between usual gas giants and very low mass stars. CoRoT discoveries extended the known range of planet masses down to about 4.8 Earth-masses (CoRoT-7b) and up to 21 Jupiter masses (CoRoT-3b), the radii to about 1.68 x 0.09 R (Earth) (CoRoT-7b) and up to the most inflated hot Jupiter with 1.49 x 0.09 R (Earth) found so far (CoRoT-1b), and the transiting exoplanet with the longest period of 95.274 days (CoRoT-9b). Giant exoplanets have been detected at low metallicity, rapidly rotating and active, spotted stars. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planethost-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that rocky planets with a density close to Earth exist outside the Solar System. Finally the detection of the secondary transit of CoRoT-1b at a sensitivity level of 10(-5) and the very clear detection of the ""super-Earth"" CoRoT-7b at 3.5 x 10(-4) relative flux are promising evidence that the space observatory is being able to detect even smaller exoplanets with the size of the Earth.
Resumo:
We describe here a procedure to bridge the gap in the field of calixarene physicochemistry between solid-state atomic-resolution structural information and the liquid-state low-resolution thermodynamics and spectroscopic data. We use MD simulations to study the kinetics and energetics involved in the complexation of lower rim calix[4]arene derivatives (L), containing bidentate ester (1) and ketone (2) pendant groups, with acetonitrile molecule (MeCN) and Cd2+ and Pb2+ ions (M2+) in acetonitrile solution. On one hand, we found that the prior inclusion of MeCN into the calix to form a L(MeCN) adduct has only a weak effect in preorganizing the hydrophilic cavity toward metal ion binding. On the other hand, the strong ion-hydrophilic cavity interaction produces a wide open calix which enhances the binding of one MeCN molecule (allosteric effect) to stabilize the whole (M2+)1(MeCN) bifunctional complex. We reach two major conclusions: (i) the MD results for the (M2+)1(MeCN) binding are in close agreement with the ""endo"", fully encapsulated, metal complex found by X-ray diffraction and in vacuo MD calculations, and (ii) the MD structure for the more flexible 2 ligand, however, differs from the also endo solid-state molecule. In fact, it shows strong solvation effects at the calixarene lower bore by competing MeCN molecules that share the metal coordination sphere with the four C=O oxygens of an ""exo"" (M2+)2(MeCN) complex.
Resumo:
A rationalization of the known difference between the (3,4)J(C4H1) and (3,4)J(C1H4) couplings transmitted mainly through the 7-bridge in norbornanone is presented in terms of the effects of hyperconjugative interactions involving the carbonyl group. Theoretical and experimental studies Of (3,4)J(CH) couplings were carried out in 3-endo- and 3-exo-X-2-norbornanone derivatives (X = Cl, Br) and in exo- and endo-2-noborneol compounds. Hyperconjugative interactions were studied with the natural bond orbital (NBO) method. Hyperconjugative interactions involving the carbonyl pi*c(2) =o and sigma*c(2) =o antibonding orbitals produce a decrease of three-bond contribution to both (3,4) J(C4H1) and (3,4)J(C1H4) couplings. However, the latter antibonding orbital also undergoes a strong sigma c(3)-c(4) ->sigma*c(2) =o interaction, which defines an additional coupling pathway for (3,4)J(C4H1) but not for (3,4)J(C1H4). This pathway is similar to that known for homoallylic couplings, the only difference being the nature of the intermediate antibonding orbital; i.e. for (3,4)J(C4H1) it is of sigma*-type, while in homoallylic couplings it is of pi*-type. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Tetrahydrofuran derivatives can be obtained by cyclo-functionalization of homoallylic alcohols bearing a terminal double bound by using [hydroxy(tosyloxy)iodo]benzene (HTIB, Koser`s reagent) in the presence of a catalytic amount of 12 (20 mol %) in MeOH under mild conditions. This transformation is an overall 5-endo-trig cyclization, which occurs by two different pathways. The first is a 4-exo-trig cyclization followed by ring expansion, whereas the second is an electrophilic addition followed by a 5-endo-tet cyclization.
Resumo:
Microwave (MW)-assisted cellulose dissolution in ionic liquids (ILs) has routinely led either to incomplete biopolymer solubilization, or its degradation. We show that these problems can be avoided by use of low-energy MW heating, coupled with efficient stirring. Dissolution of microcrystalline cellulose in the IL 1-allyl-3-methylimidazolium chloride has been achieved without changing its degree of polymerization; regenerated cellulose showed pronounced changes in its index of crystallinity, surface area, and morphology. MW-assisted functionalization of MCC by ethanoic, propanoic, butanoic, pentanoic, and hexanoic anhydrides has been studied. Compared with conventional heating, MW irradiation has resulted in considerable decrease in dissolution and reaction times. The value of the degree of substitution (DS) was found to be DS(ethanoate) > DS(propanoate) > DS(butanoate). The values of DS(pentanoate) and DS(hexanoate) were found to be slightly higher than DS(ethanoate). This surprising dependence on the chain length of the acylating agent has been reported before, but not rationalized. On the basis of the rate constants and activation parameters of the hydrolysis of ethanoic, butanoic, and hexanoic anhydrides in aqueous acetonitrile (a model acyl transfer reaction), we suggest that this result may be attributed to the balance between two opposing effects, namely, steric crowding and (cooperative) hydrophobic interactions between the anhydride and the cellulosic surface, whose lipophilicity has increased, due to its partial acylation. Four ethanoate-based mixed esters were synthesized by the reaction with a mixture of the two anhydrides; the ethanoate moiety predominated in all products. The DS is reproducible and the IL is easily recycled. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 134-143, 2010
Resumo:
The acylation of three cellulose samples by acetic anhydride, Ac(2)O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 A degrees C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac(2)O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac(2)O/AGU = 3. For all celluloses, the dependence of DS on Ac(2)O/AGU is described by an exponential decay equation: DS = DS(o) - Ae(-[(Ac2O/AGU)/B]); (A) and (B) are regression coefficients, and DS(o) is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B((M-cotton)) > B((M-sisal)) > B((MCC)); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, N(agg), of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 N(agg). To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac(2)O/AGU, time, temperature.
Resumo:
The effects of alkali treatment on the structural characteristics of cotton linters and sisal cellulose samples have been studied. Mercerization results in a decrease in the indices of crystallinity and the degrees of polymerization, and an increase in the alpha-cellulose contents of the samples. The relevance of the structural properties of cellulose to its dissolution is probed by studying the kinetics of cellulose decrystallization, prior to its solubilization in LiCl/N,N-dimethylacetamide (DMAc). Our data show that the decrystallization rate constants and activation parameters are only slightly dependent on the physico-chemical properties of the starting celluloses. This multi-step reaction is accompanied by a small enthalpy and large, negative, entropy of activation. These results are analyzed in terms of the interactions within the biopolymer chains during decrystallization, as well as those between the two ions of the electrolyte and both DMAc and cellulose.
Resumo:
A novel material comprised of bacterial cellulose (BC) and Laponite clay with different inorganic organic ratios (m/m) was prepared by the contact of never-dried membranes of BC with a previous dispersion of clay particles in water. Field emission scanning electron microscopy (FE-SEM) data of composite materials revealed an effective adhesion of clay over the surface of BC membrane; inorganic particles also penetrate into the polymer bulk, with a significant change of the surface topography even at 5% of clay loading. As a consequence, the mechanical properties are deeply affected by the presence of clay, increasing the values of the Young modulus and the tensile strength. However the maximum strain is decreased when the clay content is increased in the composite in comparison to pristine BC. The main weight loss step of the composites is shifted towards higher temperatures compared to BC, indicating that the clay particles slightly protect the polymer from thermal and oxidative decomposition. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Chitosan, a biopolymer obtained from chitin, and its derivates, such as chitosan hydrochloride, has been reported as wound healing accelerators and as possible bone substitutes for tissue engineering, and therefore these Substances could be relevant in dentistry and periodontology. The purpose of this investigation was to make a histological evaluation of chitosan and chitosan hydrochloride biomaterials (gels) used in the correction of critical size bone defects made in rat`s calvaria. Bone defects of 8 mm in diameter were surgically created in the calviria of 50 Holtzman (Rattus norvegicus) rats and filled with blood clot (control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride, and high molecular weight chitosan hydrochloride, numbering 10 animals, divided into two experimental periods (15 and 60 days), for each biomaterial. The histological evaluation was made based on the morphology of the new-formed tissues in defect`s region, and the results indicated that there was no statistical difference between the groups when the new bone formation in the entire defect`s area were compared (p > 0.05) and, except in the control groups, assorted degrees of inflammation Could be Seen. In Conclusion, chitosan and chitosan hydrochloride biomaterials used in this study were not able to promote new bone formation in critical size defects made in rat`s calvaria. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 93A: 107-114, 2016
Resumo:
The acid hydrolysis of cellulose with crystalline and amorphous fractions is analyzed on the basis of autocatalytic model with a positive feedback of acid production from the degraded biopolymer. In the condition of low acid rate production compared with hydrolysis rate, both fraction of cellulose decrease exponentially with linear and cubic time dependence, and the normalized number of scissions per cellulose chain follows a sigmoid behavior with reaction time. The model predicts that self generated acidic compounds from cellulose accelerate the degradation of the biopolymer. However, if the acidic compounds produced are volatile species, then their release under low pressure will reduce the global rate of degradation of cellulose toward its intrinsic rate value determined by the residual acid catalyst present in the starting material.
Resumo:
Depolymerization of cellulose in homogeneous acidic medium is analyzed on the basis of autocatalytic model of hydrolysis with a positive feedback of acid production from the degraded biopolymer. The normalized number of scissions per cellulose chain, S(t)/nA degrees A = 1 - C(t)/C(0), follows a sigmoid behavior with reaction time t, and the cellulose concentration C(t) decreases exponentially with a linear and cubic time dependence, C(t) = C(0)exp[-at - bt (3)], where a and b are model parameters easier determined from data analysis.
Resumo:
Uma série de derivados quirais (e.e. > 99%) foram sintetizados a partir do meso- exo-(3R,5S)-3,5-dihidróximetilenotriciclo[5,2.1.02,6]decano com altos rendimentos, usando catálise enzimática (lipases) em reações de transesterificação. A resolução do respectivo diéster racêmico através da hidrólise catalisada com esterase (PLE) não forneceu o monoéster opticamente enriquecido; enquanto que a dessimetrização do anidrido usando indutores quirais (quinina e quinidina) resultou no monoéster opticamente enriquecido (e.e.≅ 60%). O respectivo amino-álcool protegido foi preparado. Alguns análogos inéditos de peptídeos restritos incorporados do triciclodecano foram sintetizados.
Direitos humanos e Poder Judiciário: Federalização, Lei Maria da Penha e Juizados Especiais Federais
Resumo:
A partir de uma parceria com o Escritório do Brasil da Fundação Ford, o Centro de Justiça e Sociedade apresentou aos alunos de um de seus cursos de Especialização em Poder Judiciário — realizado em parceria com a Escola da Magistratura Regional Federal da 2ª Região — o desafio de pesquisar e escrever sobre temas vitais de direitos humanos diretamente conectados ao Poder Judiciário, quais sejam: a Lei Maria da Penha e a violência contra a mulher; a Federalização das graves violações de direitos humanos; e o acesso à Justiça nos Juizados Especiais Federais. Dessas parcerias institucionais e desse desafio acadêmico resultou a presente coletânea de artigos. É o produto de um esforço institucional e, sobretudo, de uma reflexão preocupada com a garantia e a efetividade dos direitos humanos. Como qualquer outro livro, merece ser lido com o espírito crítico e a desconfiança epistemológica que deve marcar o processo democrático de construção do conhecimento. Ao final, possui a característica de toda a obra engajada: a esperança num mundo melhor.