931 resultados para Eugene Sandow
Resumo:
The doubly excited 2s2p ^1P_1 level of Kr^{34+} populated via resonant transfer and excitation (RTE) feeds selectively the metastable ls2s ^1 S_0 state which can only decay via simultaneous emission of two photons to the ground state 1s^2 ^1 S_0. X-ray/X-ray coincidence measurements in heavy ionatom collisions enable the direct measurement of the spectral distribution of the two-photon decay in He-like ions. In addition, we observe strong photon cascades indueed by radiative electron capture.
Resumo:
Uniformly distributed ZnO nanorods with diameter 70-100 nm and 1-2μm long have been successfully grown at low temperatures on GaN by using the inexpensive aqueous solution method. The formation of the ZnO nanorods and the growth parameters are controlled by reactant concentration, temperature and pH. No catalyst is required. The XRD studies show that the ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. The room temperature photoluminescence measurements have shown ultraviolet peaks at 388nm with high intensity, which are comparable to those found in high quality ZnO films. The mechanism of the nanorod growth in the aqueous solution is proposed. The dependence of the ZnO nanorods on the growth parameters was also investigated. While changing the growth temperature from 60°C to 150°C, the morphology of the ZnO nanorods changed from sharp tip (needle shape) to flat tip (rod shape). These kinds of structure are useful in laser and field emission application.
Resumo:
Solid phase reaction of NiPt/Si and NiPt/SiGe is one of the key issues for silicide (germanosilicide) technology. Especially, the NiPtSiGe, in which four elements are involved, is a very complex system. As a result, a detailed study is necessary for the interfacial reaction between NiPt alloy film and SiGe substrate. Besides using traditional material characterization techniques, characterization of Schottky diode is a good measure to detect the interface imperfections or defects, which are not easy to be found on large area blanket samples. The I-V characteristics of 10nm Ni(Pt=0, 5, 10 at.%) germanosilicides/n-Si₀/₇Ge₀.₃ and silicides/n-Si contact annealed at 400 and 500°C were studied. For Schottky contact on n-Si, with the addition of Pt in the Ni(Pt) alloy, the Schottky barrier height (SBH) increases greatly. With the inclusion of a 10% Pt, SBH increases ~0.13 eV. However, for the Schottky contacts on SiGe, with the addition of 10% Pt, the increase of SBH is only ~0.04eV. This is explained by pinning of the Fermi level. The forward I-V characteristics of 10nm Ni(Pt=0, 5, 10 at.%)SiGe/SiGe contacts annealed at 400°C were investigated in the temperature range from 93 to 300K. At higher temperature (>253K) and larger bias at low temperature (<253K), the I-V curves can be well explained by a thermionic emission model. At lower temperature, excess currents at lower forward bias region occur, which can be explained by recombination/generation or patches due to inhomogenity of SBH with pinch-off model or a combination of the above mechanisms.
Resumo:
Uniformly distributed ZnO nanorods with diameter 80-120 nm and 1-2µm long have been successfully grown at low temperatures on GaN by using the inexpensive aqueous solution method. The formation of the ZnO nanorods and the growth parameters are controlled by reactant concentration, temperature and pH. No catalyst is required. The XRD studies show that the ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. The room temperature photoluminescence measurements have shown ultraviolet peaks at 388nm with high intensity, which are comparable to those found in high quality ZnO films. The mechanism of the nanorod growth in the aqueous solution is proposed. The dependence of the ZnO nanorods on the growth parameters was also investigated. While changing the growth temperature from 60°C to 150°C, the morphology of the ZnO nanorods changed from sharp tip with high aspect ratio to flat tip with smaller aspect ratio. These kinds of structure are useful in laser and field emission application.
Resumo:
The InGaN system provides the opportunity to fabricate light emitting devices over the whole visible and ultraviolet spectrum due to band-gap energies E[subscript g] varying between 3.42 eV for GaN and 1.89 eV for InN. However, high In content in InGaN layers will result in a significant degradation of the crystalline quality of the epitaxial layers. In addition, unlike other III-V compound semiconductors, the ratio of gallium to indium incorporated in InGaN is in general not a simple function of the metal atomic flux ratio, f[subscript Ga]/f[subscript In]. Instead, In incorporation is complicated by the tendency of gallium to incorporate preferentially and excess In to form metallic droplets on the growth surface. This phenomenon can definitely affect the In distribution in the InGaN system. Scanning electron microscopy, room temperature photoluminescence, and X-ray diffraction techniques have been used to characterize InGaN layer grown on InN and InGaN buffers. The growth was done on c-plane sapphire by MOCVD. Results showed that green emission was obtained which indicates a relatively high In incorporation.
Resumo:
Nanoporous GaN films are prepared by UV assisted electrochemical etching using HF solution as an electrolyte. To assess the optical quality and morphology of these nanoporous films, micro-photoluminescence (PL), micro-Raman scattering, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques have been employed. SEM and AFM measurements revealed an average pore size of about 85-90 nm with a transverse dimension of 70-75 nm. As compared to the as-grown GaN film, the porous layer exhibits a substantial photoluminescence intensity enhancement with a partial relaxation of compressive stress. Such a stress relaxation is further confirmed by the red shifted E₂(TO) phonon peak in the Raman spectrum of porous GaN.
Resumo:
Conventional floating gate non-volatile memories (NVMs) present critical issues for device scalability beyond the sub-90 nm node, such as gate length and tunnel oxide thickness reduction. Nanocrystalline germanium (nc-Ge) quantum dot flash memories are fully CMOS compatible technology based on discrete isolated charge storage nodules which have the potential of pushing further the scalability of conventional NVMs. Quantum dot memories offer lower operating voltages as compared to conventional floating-gate (FG) Flash memories due to thinner tunnel dielectrics which allow higher tunneling probabilities. The isolated charge nodules suppress charge loss through lateral paths, thereby achieving a superior charge retention time. Despite the considerable amount of efforts devoted to the study of nanocrystal Flash memories, the charge storage mechanism remains obscure. Interfacial defects of the nanocrystals seem to play a role in charge storage in recent studies, although storage in the nanocrystal conduction band by quantum confinement has been reported earlier. In this work, a single transistor memory structure with threshold voltage shift, Vth, exceeding ~1.5 V corresponding to interface charge trapping in nc-Ge, operating at 0.96 MV/cm, is presented. The trapping effect is eliminated when nc-Ge is synthesized in forming gas thus excluding the possibility of quantum confinement and Coulomb blockade effects. Through discharging kinetics, the model of deep level trap charge storage is confirmed. The trap energy level is dependent on the matrix which confines the nc-Ge.
Resumo:
The effect of flux angle, substrate temperature and deposition rate on obliquely deposited germanium (Ge) films has been investigated. By carrying out deposition with the vapor flux inclined at 87° to the substrate normal at substrate temperatures of 250°C or 300°C, it may be possible to obtain isolated Ge nanowires. The Ge nanowires are crystalline as shown by Raman Spectroscopy.
Resumo:
Scaling down of the CMOS technology requires thinner gate dielectric to maintain high performance. However, due to the depletion of poly-Si gate, it is difficult to reduce the gate thickness further especially for sub-65 nm CMOS generation. Fully silicidation metal gate (FUSI) is one of the most promising solutions. Furthermore, FUSI metal gate reduces gate-line sheet resistance, prevents boron penetration to channels, and has good process compatibility with high-k gate dielectric. Poly-SiGe gate technology is another solution because of its enhancement of boron activation and compatibility with the conventional CMOS process. Combination of these two technologies for the formation of fully germanosilicided metal gate makes the approach very attractive. In this paper, the deposition of undoped Poly-Si₁âxGex (0 < x < 30% ) films onto SiO₂ in a low pressure chemical vapor deposition (LPCVD) system is described. Detailed growth conditions and the characterization of the grown films are presented.
Resumo:
We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently removed, thereby transferring a strained-Si layer directly to Si substrate without intermediate SiGe or oxide layers. Complete removal of Ge from the structure was confirmed by cross-sectional transmission electron microscopy as well as secondary ion mass spectrometry. A plan-view transmission electron microscopy study of the strained-Si/Si interface reveals that the lattice-mismatch between the layers is accommodated by an orthogonal array of edge dislocations. This misfit dislocation array, which forms upon bonding, is geometrically necessary and has an average spacing of approximately 40nm, in excellent agreement with established dislocation theory. To our knowledge, this is the first study of a chemically homogeneous, yet lattice-mismatched, interface.
Resumo:
by Joanne M. Kaufman.
Resumo:
Este libro obedece a la propia interpretación del autor acerca de la obra de Michael Porter. Michael Porter, el autor contemporáneo que más ha incidido en los pensadores estratégicos de finales del siglo XX y principios del XXI, se caracteriza por la densidad de su obra y la prolija interpretación de los fenómenos de la competencia y la rentabilidad empresarial. Con el paso del tiempo, Porter derivó en la competitividad nacional y en las propuestas sociales que, a través de la estrategia, pretenden desmarginalizar zonas socialmente comprometidas. Este trabajo resume las acciones y reflexiones que deben emprender los estrategas para blindar sus empresas de las amenazas del entorno, garantizando de esta manera la perdurabilidad de las empresas, ente social responsable de la creación de riqueza, la generación de empleos y la inclusión social. Su público objetivo está constituido por los estudiantes, investigadores y consultores de administración, economía, ingeniería industrial y disciplinas relacionadas, tanto de pregrado y como de postgrado.
Resumo:
Michael Porter reconocido como una autoridad en estrategia nos ha motivado a entrar a analizar profundamente sus propuestas e ideas en el campo de su dominio, con el objetivo de analizarlas y validarlas en el actual ambiente de negocios, caracterizado por ser turbulento y dinámico. El método elegido fue contratar éste ambiente con el ambiente bajo el cual se crearon las propuestas estratégicas de Michael Porter. Para esto, nos enfocamos en su propuesta para la estrategia de negocio, específicamente, las Tres Estrategias Genéricas. Tomando el caso de estudio de ZARA y su trayectoria empresarial como una investigación empírica para obtener resultados y discutirlos bajo parámetros que surgen desde las críticas desarrolladas por otros autores. Tomando como fuente de información libros, ensayos, publicaciones en Internet, noticias, entrevistas a clientes y a sus empleados.
Resumo:
Las tensiones geopolíticas entre Kirguistán y Uzbekistán por el Valle de Fergana durante el periodo 2001-2010 a partir de un análisis histórico de la formación de la población y la influencia de los diferentes imperios en la región. Adicionalmente, los aspectos relativos a la importancia de los recursos energéticos en el Valle de Fergana como la configuración de las tensiones generadas entre estos dos países, haciendo énfasis en el conflicto étnico latente que se ha generado en la zona. De se utilizarán la teoría constructivista de Alexander Wendt y la teoría de la geopolítica de Yves Lacoste.
Resumo:
OBJETIVOS: Describir y comparar los cambios dinámicos de la geometría del anillo mitral durante todo el ciclo cardiaco en pacientes con insuficiencia mitral isquémica y pacientes con válvula mitral normal. MATERIALES Y MÉTODOS: Los estudios ecocardiográficos analizados fueron 37, 23 con insuficiencia mitral isquémica y 14 con válvula mitral normal. La reconstrucción del anillo se realizó en la estación de trabajo Xcelera (Philips Medial Systems) mediante la herramienta de análisis mitral (MVQ), en 5 momentos del ciclo cardiaco: Comienzo de Sístole, Mitad de Sístole, Final de Sístole, Mitad de Diástole y Final de Diástole. RESULTADOS: El anillo del grupo control, fue más dinámico, con sus menores dimensiones al final de la diástole, presentando incremento progresivo durante la sístole. Los cambios en el perímetro y el área, fueron significativos entre el comienzo y mitad de la sístole (p:0.087 y p: 0.055). En el grupo con insuficiencia mitral isquémica, el anillo fue más estático. Todas las dimensiones en este grupo, fueron mayores en los cinco momentos del ciclo cardiaco. (p < 0.1). El anillo también fue más plano, con un índice morfológico anular menor al del grupo control (p:0.087). DISCUSIÓN Y CONCLUSIONES: En pacientes sin insuficiencia mitral, el anillo es una estructura dinámica. Durante la sístole, las menores dimensiones se produjeron al comienzo de este periodo y la conformación en silla de montar se mantuvo, protegiendo contra la insuficiencia mitral. El anillo del grupo con insuficiencia mitral fue más estático y plano, perdiendo los mecanismos protectores.