300 resultados para Equacions abelianes
Resumo:
En este art\'\i culo se presenta, con una gran variedad de ejemplos, unm\'etodo para sacar ra\'\i ces cuadradas exactas. Este m\'etodo se present\'opor primera vez hace 15 a\~nos con el nombre de ley Costeana, pero adiferencia de ahora se enfatiza en el hecho que puede ser implementadoen el curso de cuarto de primaria, al cual asiste la autora (primer autor)de este articulo.
Resumo:
A maximum entropy statistical treatment of an inverse problem concerning frame theory is presented. The problem arises from the fact that a frame is an overcomplete set of vectors that defines a mapping with no unique inverse. Although any vector in the concomitant space can be expressed as a linear combination of frame elements, the coefficients of the expansion are not unique. Frame theory guarantees the existence of a set of coefficients which is “optimal” in a minimum norm sense. We show here that these coefficients are also “optimal” from a maximum entropy viewpoint.
Resumo:
Este proyecto consiste en diseñar el algoritmo de control de un autogiro no tripulado. Su aplicación principal es llevar a cabo tareas rutinarias o peligrosas para el piloto como, por ejemplo, extinción de incendios, evaluación de riesgo químico o vigilancia de lugares de acceso restringido. Se realiza un estudio del movimiento del vehículo para obtener su modelo dinámico. A partir de las ecuaciones que describen su movimiento, se realiza una simulación numérica del vehículo. Se incorpora el controlador diseñado y se evalúa su funcionamiento. Finalmente, se implementa el sistema en un microcontrolador.
Resumo:
L’objectiu del projecte es facilitar el disseny i la modificació d’antenes microstrip utilitzant models circuitals. En el document s’exposa conjuntament la teoria de vàries configuracions d’antenes microstrip dispersa en varis documents i les equacions més rellevants per l’anàlisi dels fenòmens que es produeixen en cada model d’antena amb l’objectiu de realitzar un estudi detallat de les tendències dels components de cada configuració. L’estudi de les tendències es realitza per obtenir una relació entre els paràmetres físics i els components dels models circuitals proposats per a cada configuració d’antena microstrip. Utilitzant la teoria exposada en el document i l’estudi realitzat es comprova que és possible facilitar i realitzar modificacions en el disseny d’antenes microstrip mitjançant els models circuitals proposats.
Resumo:
Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).
Resumo:
La investigación que aquí presentamos es una aproximación a las concepciones y creencias de los profesores universitarios de matemáticas acerca de la enseñanza de las ecuaciones diferenciales en estudios científico-experimentales. A parte de los intentos por caracterizar a cada profesor en términos de sus concepciones y creencias, y de establecer el nivel de coherencia y consistencia de éstas, a partir de los resultados del análisis se explica la persistencia de la utilización de métodos tradicionales de enseñanza. Las diferencias y similitudes entre las concepciones y creencias de cada profesor, y el nivel de coherencia demostrado nos han permitido establecer tres grupos de profesores, a los que hemos denominado I, II y III.
Resumo:
Intending to quest about the conceptions math teachers hold about how to teach Differential Equations to chemistry and biology students, we have devised a research tool which allows us to derive relevant information. We use different means to collect the adequate data related to the qualitative research, targeting the exploration of what teachers «say they do» and what athey do and would like to do». The use of concept maps and a questionnaire, along with a recorded interview, has revealed itself as an accurate means for the appropriate analysis of data, as shown in the case study we hereby include.
Resumo:
The integrability problem consists in finding the class of functions a first integral of a given planar polynomial differential system must belong to. We recall the characterization of systems which admit an elementary or Liouvillian first integral. We define {\it Weierstrass integrability} and we determine which Weierstrass integrable systems are Liouvillian integrable. Inside this new class of integrable systems there are non--Liouvillian integrable systems.
Resumo:
In this work we study the integrability of a two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fourth degree. We give sufficient conditions for integrability in polar coordinates. Finally we establish a conjecture about the independence of the two classes of parameters which appear in the system; if this conjecture is true the integrable cases found will be the only possible ones.
Resumo:
Let (P, Q) be a C 1 vector field defined in a open subset U ⊂ R2 . We call a null divergence factor a C 1 solution V (x, y) of the equation P ∂V + Q ∂V = ∂P + ∂Q V . In previous works ∂x ∂y ∂x ∂y it has been shown that this function plays a fundamental role in the problem of the center and in the determination of the limit cycles. In this paper we show how to construct systems with a given null divergence factor. The method presented in this paper is a generalization of the classical Darboux method to generate integrable systems.
Resumo:
In this work we study the integrability of two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fifth degree. We give a simple characterisation for the integrable cases in polar coordinates. Finally we formulate a conjecture about the independence of the two classes of parameters which appear on the system; if this conjecture is true the integrable cases found will be the only possible ones.
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approached using the language of renormalization-group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of its differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.
Resumo:
The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.
Resumo:
An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.