342 resultados para Entanglement
Resumo:
In this thesis, we investigated the evaporation of sessile microdroplets on different solid substrates. Three major aspects were studied: the influence of surface hydrophilicity and heterogeneity on the evaporation dynamics for an insoluble solid substrate, the influence of external process parameters and intrinsic material properties on microstructuring of soluble polymer substrates and the influence of an increased area to volume ratio in a microfluidic capillary, when evaporation is hindered. In the first part, the evaporation dynamics of pure sessile water drops on smooth self-assembled monolayers (SAMs) of thiols or disulfides on gold on mica was studied. With increasing surface hydrophilicity the drop stayed pinned longer. Thus, the total evaporation time of a given initial drop volume was shorter, since the drop surface, through which the evaporation occurs, stays longer large. Usually, for a single drop the volume decreased linearly with t1.5, t being the evaporation time, for a diffusion-controlled evaporation process. However, when we measured the total evaporation time, ttot, for multiple droplets with different initial volumes, V0, we found a scaling of the form V0 = attotb. The more hydrophilic the substrate was, the more showed the scaling exponent a tendency to an increased value up to 1.6. This can be attributed to an increasing evaporation rate through a thin water layer in the vicinity of the drop. Under the assumption of a constant temperature at the substrate surface a cooling of the droplet and thus a decreased evaporation rate could be excluded as a reason for the different scaling exponent by simulations performed by F. Schönfeld at the IMM, Mainz. In contrast, for a hairy surface, made of dialkyldisulfide SAMs with different chain lengths and a 1:1 mixture of hydrophilic and hydrophobic end groups (hydroxy versus methyl group), the scaling exponent was found to be ~ 1.4. It increased to ~ 1.5 with increasing hydrophilicity. A reason for this observation can only be speculated: in the case of longer hydrophobic alkyl chains the formation of an air layer between substrate and surface might be favorable. Thus, the heat transport to the substrate might be reduced, leading to a stronger cooling and thus decreased evaporation rate. In the second part, the microstructuring of polystyrene surfaces by drops of toluene, a good solvent, was investigated. For this a novel deposition technique was developed, with which the drop can be deposited with a syringe. The polymer substrate is lying on a motorized table, which picks up the pendant drop by an upward motion until a liquid bridge is formed. A consecutive downward motion of the table after a variable delay, i.e. the contact time between drop and polymer, leads to the deposition of the droplet, which can evaporate. The resulting microstructure is investigated in dependence of the processes parameters, i.e. the approach and the retraction speed of the substrate and the delay between them, and in dependence of the intrinsic material properties, i.e. the molar mass and the type of the polymer/solvent system. The principal equivalence with the microstructuring by the ink-jet technique was demonstrated. For a high approach and retraction speed of 9 mm/s and no delay between them, a concave microtopology was observed. In agreement with the literature, this can be explained by a flow of solvent and the dissolved polymer to the rim of the pinned droplet, where polymer is accumulated. This effect is analogue to the well-known formation of ring-like stains after the evaporation of coffee drops (coffee-stain effect). With decreasing retraction speed down to 10 µm/s the resulting surface topology changes from concave to convex. This can be explained with the increasing dissolution of polymer into the solvent drop prior to the evaporation. If the polymer concentration is high enough, gelation occurs instead of a flow to the rim and the shape of the convex droplet is received. With increasing delay time from below 0 ms to 1s the depth of the concave microwells decreases from 4.6 µm to 3.2 µm. However, a convex surface topology could not be obtained, since for longer delay times the polymer sticks to the tip of the syringe. Thus, by changing the delay time a fine-tuning of the concave structure is accomplished, while by changing the retraction speed a principal change of the microtopolgy can be achieved. We attribute this to an additional flow inside the liquid bridge, which enhanced polymer dissolution. Even if the pendant drop is evaporating about 30 µm above the polymer surface without any contact (non-contact mode), concave structures were observed. Rim heights as high as 33 µm could be generated for exposure times of 20 min. The concave structure exclusively lay above the flat polymer surface outside the structure even after drying. This shows that toluene is taken up permanently. The increasing rim height, rh, with increasing exposure time to the solvent vapor obeys a diffusion law of rh = rh0 tn, with n in the range of 0.46 ~ 0.65. This hints at a non-Fickian swelling process. A detailed analysis showed that the rim height of the concave structure is modulated, unlike for the drop deposition. This is due to the local stress relaxation, which was initiated by the increasing toluene concentration in the extruded polymer surface. By altering the intrinsic material parameters i.e. the polymer molar mass and the polymer/solvent combination, several types of microstructures could be formed. With increasing molar mass from 20.9 kDa to 1.44 MDa the resulting microstructure changed from convex, to a structure with a dimple in the center, to concave, to finally an irregular structure. This observation can be explained if one assumes that the microstructuring is dominated by two opposing effects, a decreasing solubility with increasing polymer molar mass, but an increasing surface tension gradient leading to instabilities of Marangoni-type. Thus, a polymer with a low molar mass close or below the entanglement limit is subject to a high dissolution rate, which leads to fast gelation compared to the evaporation rate. This way a coffee-rim like effect is eliminated early and a convex structure results. For high molar masses the low dissolution rate and the low polymer diffusion might lead to increased surface tension gradients and a typical local pile-up of polymer is found. For intermediate polymer masses around 200 kDa, the dissolution and evaporation rate are comparable and the typical concave microtopology is found. This interpretation was supported by a quantitative estimation of the diffusion coefficient and the evaporation rate. For a different polymer/solvent system, polyethylmethacrylate (PEMA)/ethylacetate (EA), exclusively concave structures were found. Following the statements above this can be interpreted with a lower dissolution rate. At low molar masses the concentration of PEMA in EA most likely never reaches the gelation point. Thus, a concave instead of a convex structure occurs. At the end of this section, the optically properties of such microstructures for a potential application as microlenses are studied with laser scanning confocal microscopy. In the third part, the droplet was confined into a glass microcapillary to avoid evaporation. Since here, due to an increased area to volume ratio, the surface properties of the liquid and the solid walls became important, the influence of the surface hydrophilicity of the wall on the interfacial tension between two immiscible liquid slugs was investigated. For this a novel method for measuring the interfacial tension between the two liquids within the capillary was developed. This technique was demonstrated by measuring the interfacial tensions between slugs of pure water and standard solvents. For toluene, n-hexane and chloroform 36.2, 50.9 and 34.2 mN/m were measured at 20°C, which is in a good agreement with data from the literature. For a slug of hexane in contact with a slug of pure water containing ethanol in a concentration range between 0 and 70 (v/v %), a difference of up to 6 mN/m was found, when compared to commercial ring tensiometry. This discrepancy is still under debate.
Resumo:
This thesis reports on the experimental investigation of controlled spin dependent interactions in a sample of ultracold Rubidium atoms trapped in a periodic optical potential. In such a situation, the most basic interaction between only two atoms at one common potential well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent interactions between the atoms can lead to an intriguing time evolution of the system. In this work, we present two examples of such spin interaction induced dynamics. First, we have been able to observe and control a coherent spin changing interaction. Second, we have achieved to examine and manipulate an interaction induced time evolution of the relative phase of a spin 1/2-system, both in the case of particle pairs and in the more general case of N interacting particles. The first part of this thesis elucidates the spin-changing interaction mechanism underlying many fascinating effects resulting from interacting spins at ultracold temperatures. This process changes the spin states of two colliding particles, while preserving total magnetization. If initial and final states have almost equal energy, this process is resonant and leads to large amplitude oscillations between different spin states. The measured coupling parameters of such a process allow to precisely infer atomic scattering length differences, that e.g. determine the nature of the magnetic ground state of the hyperfine states in Rubidium. Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect has been implemented. This allowed us to use resonant spin changing collisions as a quantitative and non-destructive particle pair probe in the optical lattice. This led to a series of experiments shedding light on the Bosonic superfluid to Mott insulator transition. In a second series of experiments we have been able to coherently manipulate the interaction induced time evolution of the relative phase in an ensemble of spin 1/2-systems. For two particles, interactions can lead to an entanglement oscillation of the particle pair. For the general case of N interacting particles, the ideal time evolution leads to the creation of spin squeezed states and even Schrödinger cat states. In the experiment we have been able to control the underlying interactions by a Feshbach resonance. For particle pairs we could directly observe the entanglement oscillations. For the many particle case we have been able to observe and reverse the interaction induced dispersion of the relative phase. The presented results demonstrate how correlated spin states can be engineered through control of atomic interactions. Moreover, the results point towards the possibility to simulate quantum magnetism phenomena with ultracold atoms in optical traps, and to realize and analyze many novel quantum spin states which have not been experimentally realized so far.
Resumo:
In questo lavoro abbiamo studiato la presenza di correzioni, dette unusuali, agli stati eccitati delle teorie conformi. Inizialmente abbiamo brevemente descritto l'approccio di Calabrese e Cardy all'entropia di entanglement nei sistemi unidimensionali al punto critico. Questo approccio permette di ottenere la famosa ed universale divergenza logaritmica di questa quantità. Oltre a questo andamento logaritmico son presenti correzioni, che dipendono dalla geometria su cui si basa l'approccio di Calabrese e Cardy, il cui particolare scaling è noto ed è stato osservato in moltissimi lavori in letteratura. Questo scaling è dovuto alla rottura locale della simmetria conforme, che è una conseguenza della criticità del sistema, intorno a particolari punti detti branch points usati nell'approccio di Calabrese e Cardy. In questo lavoro abbiamo dimostrato che le correzioni all'entropia di entanglement degli stati eccitati della teoria conforme, che può anch'essa essere calcolata tramite l'approccio di Calabrese e Cardy, hanno lo stesso scaling di quelle osservate negli stati fondamentali. I nostri risultati teorici sono stati poi perfettamente confermati dei calcoli numerici che abbiamo eseguito sugli stati eccitati del modello XX. Sono stati inoltre usati risultati già noti per lo stato fondamentale del medesimo modello per poter studiare la forma delle correzioni dei suoi stati eccitati. Questo studio ha portato alla conclusione che la forma delle correzioni nei due differenti casi è la medesima a meno di una funzione universale.
Resumo:
In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).
Resumo:
In der vorliegenden Arbeit wurden experimentelle Untersuchungen zu gepfropften Polymerfilmen durchgeführt. Dabei wurden endgepfropfte poly-methyl-methacrylate (PMMA) Bürsten hergestellt durch „grafting from“ Methoden und polystyrol (PS)/ poly-vinyl-methyl-ether (PVME) Polymerfilme gepfropft auf UV sensitiven Oberflächen untersucht. Zur Strukturuntersuchung wurden die hergestellten Systeme wurden mit Rasterkraftmikroskopie (engl.: Surface Probe Microscopy, SPM), Röntgen - und Neutronenreflektivitätsmessungen, sowie mit Röntgenstreuung unter streifenden Einfall (engl.: Grazing Incidence Small Angle X-Ray Scattering, GISAXS) untersucht. rnEs wurde gezeigt, dass ein aus der Transmissionsstreuung bekanntes Model auch für auch für die GISAXS Analyse polydisperser Polymerdomänen und Kolloidsysteme verwendet werden kann. Der maximale Fehler durch die gemachten Näherungen wurde auf < 20% abgeschätzt.rnErgebnisse aus der Strukturanalyse wurden mit mechanischen Filmeigenschaften verknüpft. Dazu wurden mechanische Spannungsexperimente durchgeführt. Hierzu wurden die zu untersuchenden Filme selektiv auf einzelne Mikro-Federbalken-Sensoren (engl.: Micro Cantilever Sensor, MCS) der MCS Arrays aufgebracht. Dies wurde durch Maskierungstechniken und Mikro-Kontaktdrucken bewerkstelligt. rnPhasenübergansexperimente der gepfropften PS/PVME Filme haben gezeigt, dass die Möglichkeit einer Polymer/Polymer Phasenseparation stark von Propfpunktdichte der gebundenen Polymerketten mit der Oberfläche abhängt. PS/PVME Filmsysteme mit hohen Pfropfpunktdichten zeigten keinen Phasenübergang. Bei niedrig gepfropften Filmsystemen waren hingegen Polymer/Polymer Phasenseparationen zu beobachten. Es wurde geschlussfolgert, dass die gepfropften Polymersysteme einen hinreichenden Grad an entropischen Freiheitsgraden benötigen um eine Phasenseparation zu zeigen. Mechanische Spannungsexperimente haben dabei das Verstehen der Phasenseparationsmechanismen möglich gemacht.rnAus Quellexperimenten dichtgepfropfter PMMA Bürsten, wurden Lösungsmittel-Polymer Wechselwirkungsparameter (-Parameter) bestimmt. Dabei wurde festgestellt, dass sich die erhaltenen Parameter aufgrund von Filmbenetzung und entropischen Effekten maßgeblich von den errechneten Bulkwerten unterscheiden. Weiterhin wurden nicht reversible Kettenverschlaufungseffekt beobachtet.
Resumo:
In questo elaborato sono stati analizzati i dati raccolti nel Corso-Laboratorio “L’esperimento più bello”, realizzato nel periodo marzo-aprile 2013 nell'ambito delle attività del Piano Lauree Scientifiche del Dipartimento di Fisica e Astronomia di Bologna. Il Corso, frequentato da studenti volontari del quinto anno di Liceo Scientifico, era finalizzato ad introdurre concetti di Fisica Quantistica seguendo, come filo conduttore, l’esperimento di interferenza con elettroni singoli e le sue varianti. I principali dati considerati e analizzati riguardano le risposte degli studenti a questionari proposti a fine Corso per avere un riscontro sul tipo di coinvolgimento e sul livello di comprensione raggiunto. L’analisi è stata condotta con l’obiettivo specifico di valutare come gli studenti si siano posti di fronte ad alcuni approfondimenti formali sviluppati per interpretare gli esperimenti e come abbiano colto i concetti trattati, ritenuti necessari per entrare nel “nuovo modo di vedere il mondo della quantistica”: il concetto di stato, sovrapposizione, ampiezza di probabilità, entanglement.
Resumo:
In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-range p-wave pairing decaying with distance as a power law. We studied the phase diagram by analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially at short range and algebraically at long range, (ii) purely algebraically. In the latter the entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-range pairing breaks also the conformal symmetry. This can be detected via the dynamics of entanglement following a quench. In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising model in a transverse field varying linearly in time with different velocities. We found different regimes: an adiabatic one (small velocities) when the system evolves according the instantaneous ground state; a sudden quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one, where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Finally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered phase.
Resumo:
The aim of this thesis is to investigate the nature of quantum computation and the question of the quantum speed-up over classical computation by comparing two different quantum computational frameworks, the traditional quantum circuit model and the cluster-state quantum computer. After an introductory survey of the theoretical and epistemological questions concerning quantum computation, the first part of this thesis provides a presentation of cluster-state computation suitable for a philosophical audience. In spite of the computational equivalence between the two frameworks, their differences can be considered as structural. Entanglement is shown to play a fundamental role in both quantum circuits and cluster-state computers; this supports, from a new perspective, the argument that entanglement can reasonably explain the quantum speed-up over classical computation. However, quantum circuits and cluster-state computers diverge with regard to one of the explanations of quantum computation that actually accords a central role to entanglement, i.e. the Everett interpretation. It is argued that, while cluster-state quantum computation does not show an Everettian failure in accounting for the computational processes, it threatens that interpretation of being not-explanatory. This analysis presented here should be integrated in a more general work in order to include also further frameworks of quantum computation, e.g. topological quantum computation. However, what is revealed by this work is that the speed-up question does not capture all that is at stake: both quantum circuits and cluster-state computers achieve the speed-up, but the challenges that they posit go besides that specific question. Then, the existence of alternative equivalent quantum computational models suggests that the ultimate question should be moved from the speed-up to a sort of “representation theorem” for quantum computation, to be meant as the general goal of identifying the physical features underlying these alternative frameworks that allow for labelling those frameworks as “quantum computation”.
Resumo:
Il contenuto fisico della Relatività Generale è espresso dal Principio di Equivalenza, che sancisce l'equivalenza di geometria e gravitazione. La teoria predice l'esistenza dei buchi neri, i più semplici oggetti macroscopici esistenti in natura: essi sono infatti descritti da pochi parametri, le cui variazioni obbediscono a leggi analoghe a quelle della termodinamica. La termodinamica dei buchi neri è posta su basi solide dalla meccanica quantistica, mediante il fenomeno noto come radiazione di Hawking. Questi risultati gettano una luce su una possibile teoria quantistica della gravitazione, ma ad oggi una simile teoria è ancora lontana. In questa tesi ci proponiamo di studiare i buchi neri nei loro aspetti sia classici che quantistici. I primi due capitoli sono dedicati all'esposizione dei principali risultati raggiunti in ambito teorico: in particolare ci soffermeremo sui singularity theorems, le leggi della meccanica dei buchi neri e la radiazione di Hawking. Il terzo capitolo, che estende la discussione sulle singolarità, espone la teoria dei buchi neri non singolari, pensati come un modello effettivo di rimozione delle singolarità. Infine il quarto capitolo esplora le ulteriori conseguenze della meccanica quantistica sulla dinamica dei buchi neri, mediante l'uso della nozione di entropia di entanglement.
Resumo:
Lo scopo di questo lavoro è cercare un'evidenza quantitativa a supporto dell'idea idea che la nonlinearità sia una risorsa per generare nonclassicità. Ci si concentrerà su sistemi unidimensionali bosonici, cercando soprattutto di connettere la nonlinearità di un oscillatore anarmonico, definito dalla forma del suo potenziale, alla nonclassicità del relativo ground state. Tra le numerose misure di nonclassicità esistenti, verranno impiegate il volume della parte negativa della funzione di Wigner e l'entanglement potential, ovvero la misura dell'entanglement prodotto dallo stato dopo il passaggio attraverso un beam splitter bilanciato avente come altro stato in ingresso il vuoto. La nonlinearità di un potenziale verrà invece caratterizzata studiando alcune proprietà del suo ground state, in particolare se ne misurerà la non-Gaussianità e la distanza di Bures rispetto al ground state di un oscillatore armonico di riferimento. Come principale misura di non-Gaussianità verrà utilizzata l'entropia relativa fra lo stato e il corrispettivo stato di riferimento Gaussiano, avente la medesima matrice di covarianza. Il primo caso che considereremo sarà quello di un potenziale armonico con due termini polinomiali aggiuntivi e il ground state ottenuto con la teoria perturbativa. Si analizzeranno poi alcuni potenziali il cui ground state è ottenibile analiticamente: l'oscillatore armonico modificato, il potenziale di Morse e il potenziale di Posch-Teller. Si andrà infine a studiare l'effetto della nonlinearità in un contesto dinamico, considerando l'evoluzione unitaria di uno stato in ingresso in un mezzo che presenta una nonlinearità di tipo Kerr. Nell'insieme, i risultati ottenuti con tutti i potenziali analizzati forniscono una forte evidenza quantitativa a supporto dell'idea iniziale. Anche i risultati del caso dinamico, dove la nonlinearità costituisce una risorsa utile per generare nonclassicità solo se lo stato iniziale è classico, confermano la pittura complessiva. Si sono inoltre studiate in dettaglio le differenze nel comportamento delle due misure di nonclassicità.
Resumo:
In questa tesi viene presentata un'analisi numerica dell'evoluzione dinamica del modello di Heisenberg XXZ, la cui simulazione è stata effettuata utilizzando l'algoritmo che va sotto il nome di DMRG. La transizione di fase presa in esame è quella dalla fase paramagnetica alla ferromagnetica: essa viene simulata in una catena di 12 siti per vari tempi di quench. In questo modo si sono potuti esplorare diversi regimi di transizione, da quello istantaneo al quasi-adiabatico. Come osservabili sono stati scelti l'entropia di entanglement, la magnetizzazione di mezza catena e lo spettro dell'entanglement, particolarmente adatti per caratterizzare la fisica non all'equilibrio di questo tipo di sistemi. Lo scopo dell'analisi è tentare una descrizione della dinamica fuori dall'equilibrio del modello per mezzo del meccanismo di Kibble-Zurek, che mette in relazione la sviluppo di una fase ordinata nel sistema che effettua la transizione quantistica alla densità di difetti topologici, la cui legge di scala è predicibile e legata agli esponenti critici universali caratterizzanti la transizione.
Resumo:
Quantum channel identification, a standard problem in quantum metrology, is the task of estimating parameter(s) of a quantum channel. We investigate dissonance (quantum discord in the absence of entanglement) as an aid to quantum channel identification and find evidence for dissonance as a resource for quantum information processing. We consider the specific case of dissonant Bell-diagonal probes of the qubit depolarizing channel, using quantum Fisher information as a measure of statistical information extracted by the probe. In this setting dissonant quantum probes yield more statistical information about the depolarizing probability than do corresponding probes without dissonance and greater dissonance yields greater information. This effect only operates consistently when we control for classical correlation between the probe and its ancilla and the joint and marginal purities of the ancilla and probe.
Resumo:
Energy in a multipartite quantum system appears from an operational perspective to be distributed to some extent non-locally because of correlations extant among the system's components. This non-locality allows users to transfer, in effect, locally accessible energy between sites of different system components by local operations and classical communication (LOCC). Quantum energy teleportation is a three-step LOCC protocol, accomplished without an external energy carrier, for effectively transferring energy between two physically separated, but correlated, sites. We apply this LOCC teleportation protocol to a model Heisenberg spin particle pair initially in a quantum thermal Gibbs state, making temperature an explicit parameter. We find in this setting that energy teleportation is possible at any temperature, even at temperatures above the threshold where the particles' entanglement vanishes. This shows for Gibbs spin states that entanglement is not fundamentally necessary for energy teleportation; correlation other than entanglement can suffice. Dissonance-quantum correlation in separable states-is in this regard shown to be a quantum resource for energy teleportation, more dissonance being consistently associated with greater energy yield. We compare energy teleportation from particle A to B in Gibbs states with direct local energy extraction by a general quantum operation on B and find a temperature threshold below which energy extraction by a local operation is impossible. This threshold delineates essentially two regimes: a high temperature regime where entanglement vanishes and the teleportation generated by other quantum correlations yields only vanishingly little energy relative to local extraction and a second low-temperature teleportation regime where energy is available at B only by teleportation.
Resumo:
Passive states of quantum systems are states from which no system energy can be extracted by any cyclic (unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to allow any general quantum operation, but the operation is required to be local, being applied only to a specific subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles nor limited to the near vicinity of the ground state.
Resumo:
This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes.