967 resultados para Elliptic Curve
Resumo:
In this thesis some of the most important issues presently debated on international sustainability are analysed. The thesis is composed of five independent studies that tackle organically the following issues: the maritime transport externalities, the environmental Kuznets curve, the responsibilities in the carbon dioxide emissions and the integrated approach that have to be used to translate the principles of sustainability into policy. The analysis will be instrumental to demonstrating that sustainability, being a matter of economy, society and environment, requires to be analysed in a transdisciplinary perspective. Using an integrated approach to analyse the relationships between economy and environment, this thesis highlight that sustainability management requires joint economic instruments, integrated analysis, societal behavioural changes as well as responsibilities shifting.
Resumo:
This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solutions of fractional equations. Moreover we study a particular type of solutions, called saddle-shaped solutions, which are the candidates to be global minimizers not one-dimensional in dimensions bigger or equal than 8. This is an open problem and it is expected to be true from the classical theory of minimal surfaces.
Resumo:
Dopo aver definito tutte le proprietà, si classificano gli schemi di suddivisione per curve. Si propongono, quindi, degli schemi univariati per la compressione di segnali e degli schemi bivariati per lo scaling e la compressione di immagini digitali.
Resumo:
In questa tesi si esaminano alcune questioni riguardanti le curve definite su campi finiti. Nella prima parte si affronta il problema della determinazione del numero di punti per curve regolari. Nella seconda parte si studia il numero di classi di ideali dell’anello delle coordinate di curve piane definite da polinomi assolutamente irriducibili, per ottenere, nel caso delle curve ellittiche, risultati analoghi alla classica formula di Dirichlet per il numero di classi dei campi quadratici e delle congetture di Gauss.
Resumo:
Negli ultimi anni la ricerca nella cura dei tumori si è interessata allo sviluppo di farmaci che contrastano la formazione di nuovi vasi sanguigni (angiogenesi) per l’apporto di ossigeno e nutrienti ai tessuti tumorali, necessari per l’accrescimento e la sopravvivenza del tumore. Per valutare l’efficacia di questi farmaci antiangiogenesi esistono tecniche invasive: viene prelevato tramite biopsia un campione di tessuto tumorale, e tramite analisi microscopica si quantifica la densità microvascolare (numero di vasi per mm^2) del campione. Stanno però prendendo piede tecniche di imaging in grado di valutare l’effetto di tali terapie in maniera meno invasiva. Grazie allo sviluppo tecnologico raggiunto negli ultimi anni, la tomografia computerizzata è tra le tecniche di imaging più utilizzate per questo scopo, essendo in grado di offrire un’alta risoluzione sia spaziale che temporale. Viene utilizzata la tomografia computerizzata per quantificare la perfusione di un mezzo di contrasto all’interno delle lesioni tumorali, acquisendo scansioni ripetute con breve intervallo di tempo sul volume della lesione, a seguito dell’iniezione del mezzo di contrasto. Dalle immagini ottenute vengono calcolati i parametri perfusionali tramite l’utilizzo di differenti modelli matematici proposti in letteratura, implementati in software commerciali o sviluppati da gruppi di ricerca. Al momento manca un standard per il protocollo di acquisizione e per l’elaborazione delle immagini. Ciò ha portato ad una scarsa riproducibilità dei risultati intra ed interpaziente. Manca inoltre in letteratura uno studio sull’affidabilità dei parametri perfusionali calcolati. Il Computer Vision Group dell’Università di Bologna ha sviluppato un’interfaccia grafica che, oltre al calcolo dei parametri perfusionali, permette anche di ottenere degli indici sulla qualità dei parametri stessi. Questa tesi, tramite l’analisi delle curve tempo concentrazione, si propone di studiare tali indici, di valutare come differenti valori di questi indicatori si riflettano in particolari pattern delle curve tempo concentrazione, in modo da identificare la presenza o meno di artefatti nelle immagini tomografiche che portano ad un’errata stima dei parametri perfusionali. Inoltre, tramite l’analisi delle mappe colorimetriche dei diversi indici di errore si vogliono identificare le regioni delle lesioni dove il calcolo della perfusione risulta più o meno accurato. Successivamente si passa all’analisi delle elaborazioni effettuate con tale interfaccia su diversi studi perfusionali, tra cui uno studio di follow-up, e al confronto con le informazioni che si ottengono dalla PET in modo da mettere in luce l’utilità che ha in ambito clinico l’analisi perfusionale. L’intero lavoro è stato svolto su esami di tomografia computerizzata perfusionale di tumori ai polmoni, eseguiti presso l’Unità Operativa di Diagnostica per Immagini dell’IRST (Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori) di Meldola (FC). Grazie alla collaborazione in atto tra il Computer Vision Group e l’IRST, è stato possibile sottoporre i risultati ottenuti al primario dell’U. O. di Diagnostica per Immagini, in modo da poterli confrontare con le considerazioni di natura clinica.
Resumo:
In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.
Resumo:
The Factorization Method localizes inclusions inside a body from measurements on its surface. Without a priori knowing the physical parameters inside the inclusions, the points belonging to them can be characterized using the range of an auxiliary operator. The method relies on a range characterization that relates the range of the auxiliary operator to the measurements and is only known for very particular applications. In this work we develop a general framework for the method by considering symmetric and coercive operators between abstract Hilbert spaces. We show that the important range characterization holds if the difference between the inclusions and the background medium satisfies a coerciveness condition which can immediately be translated into a condition on the coefficients of a given real elliptic problem. We demonstrate how several known applications of the Factorization Method are covered by our general results and deduce the range characterization for a new example in linear elasticity.
Resumo:
In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.
Resumo:
We consider the heat flux through a domain with subregions in which the thermal capacity approaches zero. In these subregions the parabolic heat equation degenerates to an elliptic one. We show the well-posedness of such parabolic-elliptic differential equations for general non-negative L-infinity-capacities and study the continuity of the solutions with respect to the capacity, thus giving a rigorous justification for modeling a small thermal capacity by setting it to zero. We also characterize weak directional derivatives of the temperature with respect to capacity as solutions of related parabolic-elliptic problems.
Resumo:
Assuming that the heat capacity of a body is negligible outside certain inclusions the heat equation degenerates to a parabolic-elliptic interface problem. In this work we aim to detect these interfaces from thermal measurements on the surface of the body. We deduce an equivalent variational formulation for the parabolic-elliptic problem and give a new proof of the unique solvability based on Lions’s projection lemma. For the case that the heat conductivity is higher inside the inclusions, we develop an adaptation of the factorization method to this time-dependent problem. In particular this shows that the locations of the interfaces are uniquely determined by boundary measurements. The method also yields to a numerical algorithm to recover the inclusions and thus the interfaces. We demonstrate how measurement data can be simulated numerically by a coupling of a finite element method with a boundary element method, and finally we present some numerical results for the inverse problem.