997 resultados para Electronics engineers
Resumo:
In this chapter, we explore methods for automatically generating game content—and games themselves—adapted to individual players in order to improve their playing experience or achieve a desired effect. This goes beyond notions of mere replayability and involves modeling player needs to maximize their enjoyment, involvement, and interest in the game being played. We identify three main aspects of this process: generation of new content and rule sets, measurement of this content and the player, and adaptation of the game to change player experience. This process forms a feedback loop of constant refinement, as games are continually improved while being played. Framed within this methodology, we present an overview of our recent and ongoing research in this area. This is illustrated by a number of case studies that demonstrate these ideas in action over a variety of game types, including 3D action games, arcade games, platformers, board games, puzzles, and open-world games. We draw together some of the lessons learned from these projects to comment on the difficulties, the benefits, and the potential for personalized gaming via adaptive game design.
Resumo:
This paper is not about the details of yet another robot control system, but rather the issues surrounding realworld robotic implementation. It is a fact that in order to realise a future where robots co-exist with people in everyday places, we have to pass through a developmental phase that involves some risk. Putting a “Keep Out, Experiment in Progress” sign on the door is no longer possible since we are now at a level of capability that requires testing over long periods of time in complex realistic environments that contain people. We all know that controlling the risk is important – a serious accident could set the field back globally – but just as important is convincing others that the risks are known and controlled. In this article, we describe our experience going down this path and we show that mobile robotics research health and safety assessment is still unexplored territory in universities and is often ignored. We hope that the article will make robotics research labs in universities around the world take note of these issues rather than operating under the radar to prevent any catastrophic accidents.
Resumo:
Integration of small-scale electricity generators, known as distributed generation (DG), into the distribution networks has become increasingly popular at the present. This tendency together with the falling price of the synchronous-type generator has potential to give DG a better chance at participating in the voltage regulation process together with other devices already available in the system. The voltage control issue turns out to be a very challenging problem for the distribution engineers since existing control coordination schemes would need to be reconsidered to take into account the DG operation. In this paper, we propose a control coordination technique, which is able to utilize the ability of DG as a voltage regulator and, at the same time, minimize interaction with other active devices, such as an on-load tap changing transformer and a voltage regulator. The technique has been developed based on the concept of control zone, line drop compensation, dead band, as well as the choice of controllers' parameters. Simulations carried out on an Australian system show that the technique is suitable and flexible for any system with multiple regulating devices including DG.
Resumo:
Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.
Resumo:
Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.
Resumo:
In this paper, we used a nonconservative Lagrangian mechanics approach to formulate a new statistical algorithm for fluid registration of 3-D brain images. This algorithm is named SAFIRA, acronym for statistically-assisted fluid image registration algorithm. A nonstatistical version of this algorithm was implemented, where the deformation was regularized by penalizing deviations from a zero rate of strain. In, the terms regularizing the deformation included the covariance of the deformation matrices Σ and the vector fields (q). Here, we used a Lagrangian framework to reformulate this algorithm, showing that the regularizing terms essentially allow nonconservative work to occur during the flow. Given 3-D brain images from a group of subjects, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the nonstatistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the nonconservative terms, creating four versions of SAFIRA. We evaluated and compared our algorithms' performance on 92 3-D brain scans from healthy monozygotic and dizygotic twins; 2-D validations are also shown for corpus callosum shapes delineated at midline in the same subjects. After preliminary tests to demonstrate each method, we compared their detection power using tensor-based morphometry (TBM), a technique to analyze local volumetric differences in brain structure. We compared the accuracy of each algorithm variant using various statistical metrics derived from the images and deformation fields. All these tests were also run with a traditional fluid method, which has been quite widely used in TBM studies. The versions incorporating vector-based empirical statistics on brain variation were consistently more accurate than their counterparts, when used for automated volumetric quantification in new brain images. This suggests the advantages of this approach for large-scale neuroimaging studies.
Resumo:
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or $J$-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the $J$-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
Resumo:
The 'rich club' coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development.
Resumo:
We used diffusion tensor magnetic resonance imaging (DTI) to reveal the extent of genetic effects on brain fiber microstructure, based on tensor-derived measures, in 22 pairs of monozygotic (MZ) twins and 23 pairs of dizygotic (DZ) twins (90 scans). After Log-Euclidean denoising to remove rank-deficient tensors, DTI volumes were fluidly registered by high-dimensional mapping of co-registered MP-RAGE scans to a geometrically-centered mean neuroanatomical template. After tensor reorientation using the strain of the 3D fluid transformation, we computed two widely used scalar measures of fiber integrity: fractional anisotropy (FA), and geodesic anisotropy (GA), which measures the geodesic distance between tensors in the symmetric positive-definite tensor manifold. Spatial maps of intraclass correlations (r) between MZ and DZ twins were compared to compute maps of Falconer's heritability statistics, i.e. the proportion of population variance explainable by genetic differences among individuals. Cumulative distribution plots (CDF) of effect sizes showed that the manifold measure, GA, comparably the Euclidean measure, FA, in detecting genetic correlations. While maps were relatively noisy, the CDFs showed promise for detecting genetic influences on brain fiber integrity as the current sample expands.
Resumo:
Bioacoustic monitoring has become a significant research topic for species diversity conservation. Due to the development of sensing techniques, acoustic sensors are widely deployed in the field to record animal sounds over a large spatial and temporal scale. With large volumes of collected audio data, it is essential to develop semi-automatic or automatic techniques to analyse the data. This can help ecologists make decisions on how to protect and promote the species diversity. This paper presents generic features to characterize a range of bird species for vocalisation retrieval. In the implementation, audio recordings are first converted to spectrograms using short-time Fourier transform, then a ridge detection method is applied to the spectrogram for detecting points of interest. Based on the detected points, a new region representation are explored for describing various bird vocalisations and a local descriptor including temporal entropy, frequency bin entropy and histogram of counts of four ridge directions is calculated for each sub-region. To speed up the retrieval process, indexing is carried out and the retrieved results are ranked according to similarity scores. The experiment results show that our proposed feature set can achieve 0.71 in term of retrieval success rate which outperforms spectral ridge features alone (0.55) and Mel frequency cepstral coefficients (0.36).
Resumo:
Frequency Domain Spectroscopy (FDS) is one of the major techniques used for determining the condition of the cellulose based paper and pressboard components in large oil/paper insulated power transformers. This technique typically makes use of a sinusoidal voltage source swept from 0.1 mHz to 1 kHz. The excitation test voltage source used must meet certain characteristics, such as high output voltage, high fidelity, low noise and low harmonic content. The amplifier used; in the test voltage source; must be able to drive highly capacitive loads. This paper proposes that a switch-mode assisted linear amplifier (SMALA) can be used in the test voltage source to meet these criteria. A three level SMALA prototype amplifier was built to experimentally demonstrate the effectiveness of this proposal. The developed SMALA prototype shows no discernable harmonic distortion in the output voltage waveform, or the need for output filters, and is therefore seen as a preferable option to pulse width modulated digital amplifiers. The lack of harmonic distortion and high frequency switching noise in the output voltage of this SMALA prototype demonstrates its feasibility for applications in FDS, particularly on highly capacitive test objects such as transformer insulation systems.
Resumo:
Pre-breakdown discharge activity in SF6 and SF6 +2% N2 at 1 bar absolute has been investigated to assess the feasibility of adding small amounts of N2 to SF6 to improve the luminosity of the pre-breakdown discharges. It has been shown that small amounts of N2 does not significantly alter the breakdown strength of the mixture but will have a profound influence on the pre-breakdown discharge activity under 50 Hz voltages and lightning impulse voltages. This influence is attributed to the following three mechanisms: 1. The increased availability of free electrons due to the lower ionisation potential of the N2 compared to SF6 2. The removal of high energy electrons from the discharge by electron scattering due to negative ion resonance in N2, thus effectively increasing the attachment of SF6. 3. The creation of longer lived SF6- ions by the attachment of the scattered low energy electrons from N2 thus effectively enhancing the negative ion space charge.