977 resultados para Distributed Database Integration
Resumo:
Our study aims to investigate changes in electrocortical activity by observing the variations in absolute theta power in the primary somatomotor and parietal regions of the brain under three different electrical stimulation conditions: control group (without stimulation), group 24 (24 trials of stimulation) and group 36 (36 trials of stimulation). Thus, our hypothesis is that the application of different patterns of electrical stimulation will promote different states of habituation in these regions. The sample was composed of 24 healthy (absence of mental and physical impairments) students (14 male and 10 female), with ages varying from 25 to 40 years old (32.5 +/- 7.5), who are right-handed (Edinburgh Inventory). The subjects were randomly distributed into three groups: control (n = 8), G24 (n = 8) and G36 (n = 8). We use the Functional electrical stimulation (FES) equipment (NeuroCompact-2462) to stimulate the right index finger extensor muscle, while the electroencephalographic signal was simultaneously recorded. We found an interaction between condition and block factors for the C3 and P3 electrode, a condition and block main effects for the C4 electrode, and a condition main effect for the P4 electrode. Our results support the hypothesis that electrical stimulation promotes neurophysiological changes. It appears that stimulus adaptation (accommodation) of specific circuits can strengthen the brain`s ability to distinguish between and respond to such stimuli over time. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We suggest a new notion of behaviour preserving transition refinement based on partial order semantics. This notion is called transition refinement. We introduced transition refinement for elementary (low-level) Petri Nets earlier. For modelling and verifying complex distributed algorithms, high-level (Algebraic) Petri nets are usually used. In this paper, we define transition refinement for Algebraic Petri Nets. This notion is more powerful than transition refinement for elementary Petri nets because it corresponds to the simultaneous refinement of several transitions in an elementary Petri net. Transition refinement is particularly suitable for refinement steps that increase the degree of distribution of an algorithm, e.g. when synchronous communication is replaced by asynchronous message passing. We study how to prove that a replacement of a transition is a transition refinement.
Resumo:
Our objective is to verify the modulatory effects of bromazepam on EEG theta absolute power when subjects were submitted to a visuomotor task (i.e., car driver task). Sample was composed of 14 students (9 males and 5 females), right handed, with ages varying between 23 and 42 years (mean = 32.5 +/- 9.5), absence of mental or physical impairments, no psychoactive or psychotropic substance use and no neuromuscular disorders (screened by a clinical examination). The results showed an interaction between condition and electrodes (p=0.034) in favor of F8 electrode compared with F7 in both experimental conditions (t-test; p=0.001). Additionally, main effects were observed for condition (p=0.001), period (p=0.001) and electrodes (p=0.031) in favor of F4 electrode compared with F3. In conclusion, Br 6 mg of bromazepam may interfere in sensorimotor processes in the task performance in an unpredictable scenario allowing that certain visuospatial factors were predominant. Therefore, the results may reflect that bromazepam effects influence the performance of the involved areas because of the acquisition and integration of sensory stimuli processes until the development of a motor behavior based on the same stimuli. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Weiss and Isen have provided many supportive comments about the multi-level perspective, but also found limitations. Isen noted the importance of integrating affect, cognition, and motivation. Weiss commented similarly that the model lacked an integrating “thread.” He suggested that, to be truly multilevel, each level should constrain processes at other levels, and also provide guidance for the development of new concepts. Weiss also noted that the focus on biological processes was a strength of the model. I respond by suggesting that these very biological processes may constitute the “missing” thread. To illustrate this, I discuss some of the recent research on emotions in organizational settings, and argue that biology both constrains and guides theory at each level of the model. Based on this proposition, I revisit each of the five levels in the model, to demonstrate how this integration can be accomplished in this fashion. Finally, I address two additional points: aggregation bias, and the possibility of extending the model to include higher levels of industry and region.
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop. Specific alpha absolute power changes were measured in quantitative electroencephalography (qEEG). Our hypothesis is that during the preparation of motoraction (i.e.. 2 s before the ball drops) integration occurs among the left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. We contend that in right-handers, the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy right handed subjects (13 men and 10 women), with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness. The experiment consisted of a task of catching balls with the right hard in free drop. The three-way ANOVA analysis demonstrated all interaction between moment and position in left-medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.05). Summarizing, the experimental task enabled the observation of integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation.
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop; specifically through quantitative electroencephalography (qEEG) alpha absolute power changes. Our hypothesis is that during the preparation of motor action (i.e., 2 s before ball`s drop) occurred integration among left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. This hypothesis supports a lateralization of motor function. Although we contend that in right-handers the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy subjects (13 male and 10 female), right handed, with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness, right handed, and do not make use of any psychoactive or psychotropic substance at the time of the study. The experiment consisted of a task of catching balls in free drop. The three-way ANOVA analysis demonstrated an interaction between moment and position in left medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.001). Summarizing, through experimental task employed, it was possible to observe integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation. In this way, it established an absolute predominance of this mechanism under the left hemisphere. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: To examine the changes in slow (8-10 Hz)and fast (10-12 Hz) alpha bands of EEG in three groups of subjects submitted to different amounts of functional electrostimulation (FES). Our hypothesis is that different amounts of electrostimulation may cause different patterns of activation in the sensorimotor cortex. In particular, we expect to see an increase in alpha power due to habituation effects. We examine the two bands comprised by alpha rhythm (i.e., slow and fast alpha), since these two sub-rhythms are related to distinct aspects: general energy demands and specific motor aspects, respectively. Methods: The sample was composed of 27 students, both sexes, aging between 25 and 40 years old. The subjects were randomly distributed in three groups: control (n = 9), G24 (n = 9) and G36 (n = 9). A FES equipment (Neuro Compact-2462) was used to stimulate the right index finger extension. Simultaneously, the electroencephalographic signal was acquired. We investigated the absolute power in slow and fast alpha bands in the sensorimotor cortex. Results: The G36 indicated a significant increasing in absolute power values in lower and higher alpha components, respectively, when compared with the control group. Particularly, in the following regions: pre-motor cortex and primary motor cortex. Discussion: FES seems to promote cortical adaptations that are similar to those observed when someone learns a procedural task. FES application in the G36 was more effective in promoting such neural changes. The lower and higher components of alpha rhythms behave differently in their topographical distribution during FES application. These results suggest a somatotopic organization in primary motor cortex which can be represented by the fast alpha component. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction. A fundamental aspect of planning future actions is the performance and control of motor tasks. This behaviour is done through sensory-motor integration. Aim. To explain the electrophysiological mechanisms in the cortex (modifications to the alpha band) that are involved in anticipatory actions when individuals have to catch a free-falling object. Subjects and methods. The sample was made up of 20 healthy subjects of both sexes (11 males and 9 females) with ages ranging between 25 and 40 years (32.5 +/- 7.5) who were free of mental or physical diseases (previous medical history); the subjects were right-handed (Edinburgh Inventory) and were not taking any psychoactive or psychotropic substances at the time of the study. The experiment consisted in a task in which subjects had to catch freely falling objects. The experiment was made up of six blocks of 15 tests, each of which lasted 2 minutes and 30 seconds before and two seconds after each ball was dropped. Results. An interaction of the factors moment and position was only observed for the right parietooccipital cortex, in the combination of electrodes P4-O2. Conclusion. These findings suggest that the right parietooccipital cortex plays an important role in increasing expectation and swiftness in the process of preparing for a motor task.
Resumo:
293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.