827 resultados para Cutting mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a spectroscopic study about the energy transfer mechanism among silicon nanoparticles (Si-np), both amorphous and crystalline, and Er ions in a silicon dioxide matrix. From infrared spectroscopic analysis, we have determined that the physics of the transfer mechanism does not depend on the Si-np nature, finding a fast (< 200 ns) energy transfer in both cases, while the amorphous nanoclusters reveal a larger transfer efficiency than the nanocrystals. Moreover, the detailed spectroscopic results in the visible range here reported are essential to understand the physics behind the sensitization effect, whose knowledge assumes a crucial role to enhance the transfer rate and possibly employing the material in optical amplifier devices. Joining the experimental data, performed with pulsed and continuous-wave excitation, we develop a model in which the internal intraband recombination within Si-np is competitive with the transfer process via an Auger electron"recycling" effect. Posing a different light on some detrimental mechanism such as Auger processes, our findings clearly recast the role of Si-np in the sensitization scheme, where they are able to excite very efficiently ions in close proximity to their surface. (C) 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Under stressful conditions, mutant or post-translationally modified proteins may spontaneously misfold and form toxie species, which may further assemble into a continuum of increasingly large and insoluble toxic oligomers that may further condense into less toxic, compact amyloids in the cell Intracellular accumulation of aggregated proteins is a common denominator of several neurodegenerative diseases. To cope with the cytotoxicity induced by abnormal, aggregated proteins, cells have evolved various defence mechanisms among which, the molecular chaperones Hsp70. Hsp70 (DnaK in E. coii) is an ATPase chaperone involved in many physiological processes in the cell, such as assisting de novo protein folding, dissociating native protein oligomers and serving as pulling motors in the import of polypeptides into organelles. In addition, Hsp70 chaperones can actively solubilize and reactivate stable protein aggregates, such as heat- or mutation-induced aggregates. Hsp70 requires the cooperation of two other co-chaperones: Hsp40 and NEF (Nucleotide exchange factor) to fulfil its unfolding activity. In the first experimental section of this thesis (Chapter II), we studied by biochemical analysis the in vitro interaction between recombinant human aggregated α-synuclein (a-Syn oligomers) mimicking toxic a-Syn oligomers species in PD brains, with a model Hsp70/Hsp40 chaperone system (the E. coii DnaK/DnaJ/GrpE). We found that chaperone-mediated unfolding of two denatured model enzymes were strongly affected by α-Syn oligomers but, remarkably, not by monomers. This in vitro observed dysfunction of the Hsp70 chaperone system resulted from the sequestration of the Hsp40 proteins by the oligomeric α-synuclein species. In the second experimental part (Chapter III), we performed in vitro biochemical analysis of the co-chaperone function of three E. coii Hsp40s proteins (DnaJ, CbpA and DjlA) in the ATP-fuelled DnaK-mediated refolding of a model DnaK chaperone substrate into its native state. Hsp40s activities were compared using dose-response approaches in two types of in vitro assays: refolding of heat-denatured G6PDH and DnaK-mediated ATPase activity. We also observed that the disaggregation efficiency of Hsp70 does not directly correlate with Hsp40 binding affinity. Besides, we found that these E. coii Hsp40s confer substrate specificity to DnaK, CbpA being more effective in the DnaK-mediated disaggregation of large G6PDH aggregates than DnaJ under certain conditions. Sensibilisées par différents stress ou mutations, certaines protéines fonctionnelles de la cellule peuvent spontanément se convertir en formes inactives, mal pliées, enrichies en feuillets bêta, et exposant des surfaces hydrophobes favorisant l'agrégation. Cherchant à se stabiliser, les surfaces hydrophobes peuvent s'associer aux régions hydrophobes d'autres protéines mal pliées, formant des agrégats protéiques stables: les amyloïdes. Le dépôt intracellulaire de protéines agrégées est un dénominateur commun à de nombreuses maladies neurodégénératives. Afin de contrer la cytotoxicité induite par les protéines agrégées, les cellules ont développé plusieurs mécanismes de défense, parmi lesquels, les chaperonnes moléculaires Hsp70. Hsp70 nécessite la collaboration de deux autres co-chaperonnes : Hsp40 et NEF pour accomplir son activité de désagrégation. Hsp70 (DnaK, chez E. coli) est impliquée par ailleurs dans d'autres fonctions physiologiques telles que l'assistanat de protéines néosynthétisées à la sortie du ribosome, ou le transport transmembranaire de polypeptides. Par ailleurs, les chaperonnes Hsp70 peuvent également solubiliser et réactiver des protéines agrégées à la suite d'un stress ou d'une mutation. Dans la première partie expérimentale de cette thèse (Chapter II), nous avons étudié in vitro l'interaction entre les oligomères d'a-synucleine, responsables entre autres, de la maladie de Parkinson, et le système chaperon Hsp70/Hsp40 (système Escherichia coli DnaK/DnaJ/GrpE). Nous avons démontré que contrairement aux monomères, les oligomères d'a-synucleine inhibaient le système chaperon lors du repliement de protéines agrégées. Cette dysfonction du système chaperon résulte de la séquestration des chaperonnes Hsp40 par les oligomères d'a-synucleine. La deuxième partie expérimentale (Chapitre III) est consacrée à une étude in vitro de la fonction co-chaperonne de trois Hsp40 d'is. coli (DnaJ, CbpA, et DjlA) lors de la désagrégation par DnaK d'une protéine pré-agrégée. Leurs activités ont été comparées par le biais d'une approche dose-réponse au niveau de deux analyses enzymatiques: le repliement de la protéine agrégée et l'activité ATPase de DnaK. Par ailleurs, nous avons mis en évidence que l'efficacité de désagrégation d'Hsp70 et l'affinité des chaperonnes Hsp40 vis-à-vis de leur substrat n'étaient pas corrélées positivement. Nous avons également montré que ces trois chaperonnes Hsp40 étaient directement impliquées dans la spécificité des fonctions accomplies par les chaperonnes Hsp70. En effet, DnaK en présence de CbpA assure la désagrégation de large agrégats protéiques avec une efficacité nettement plus accrue qu'en présence de DnaJ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic exposure to glucocorticoid hormones, resulting from either drug treatment or Cushing's syndrome, results in insulin resistance, central obesity, and symptoms similar to the metabolic syndrome. We hypothesized that the major metabolic effects of corticosteroids are mediated by changes in the key metabolic enzyme adenosine monophosphate-activated protein kinase (AMPK) activity. Activation of AMPK is known to stimulate appetite in the hypothalamus and stimulate catabolic processes in the periphery. We assessed AMPK activity and the expression of several metabolic enzymes in the hypothalamus, liver, adipose tissue, and heart of a rat glucocorticoid-excess model as well as in in vitro studies using primary human adipose and primary rat hypothalamic cell cultures, and a human hepatoma cell line treated with dexamethasone and metformin. Glucocorticoid treatment inhibited AMPK activity in rat adipose tissue and heart, while stimulating it in the liver and hypothalamus. Similar data were observed in vitro in the primary adipose and hypothalamic cells and in the liver cell line. Metformin, a known AMPK regulator, prevented the corticosteroid-induced effects on AMPK in human adipocytes and rat hypothalamic neurons. Our data suggest that glucocorticoid-induced changes in AMPK constitute a novel mechanism that could explain the increase in appetite, the deposition of lipids in visceral adipose and hepatic tissue, as well as the cardiac changes that are all characteristic of glucocorticoid excess. Our data suggest that metformin treatment could be effective in preventing the metabolic complications of chronic glucocorticoid excess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the mechanism for noise-induced phase transitions proposed by Ibañes et al. [Phys. Rev. Lett. 87, 020601 (2001)] to pattern formation phenomena. In contrast with known mechanisms for pure noise-induced pattern formation, this mechanism is not driven by a short-time instability amplified by collective effects. The phenomenon is analyzed by means of a modulated mean field approximation and numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne microbial products have been reported to promote immune responses that suppress asthma, yet how these beneficial effects take place remains controversial and poorly understood. We have found that pulmonary exposure with the bacterium Escherichia coli leads to a suppression of allergic airway inflammation, characterized by reduced airway-hyperresponsiveness, eosinophilia and cytokine production by T cells in the lung. This immune modulation was neither mediated by the induction of a Th1 response nor regulatory T cells; was dependent on TLR-4 but did not involve TLR-desensitization. Dendritic cell migration to the draining lymph nodes and subsequent activation of T cells was unaffected by prior exposure to E.coli indicating that the immunomodulation was limited to the lung environment. In non-treated control mice ovalbumin was primarily presented by airway CD11b+ CD11c+ DCs expressing high levels of MHC class II molecules whilst the DCs in E.coli-treated mice displayed a less activated phenotype and had impaired antigen presentation capacity. Consequently, in situ Th2 cytokine production by ovalbuminspecific effector T cells recruited to the airways was significantly reduced. The suppression of airways hyper responsiveness was mediated through the recruitment of IL-17-producing gd-T cells; however, the suppression of dendritic cells and T cells was mediated through a distinct mechanism that could not be overcome by the local administration of activated dendritic cells, or by the in vivo administration of TNF-alpha. Taken together, these data reveal a novel multi-component immunoregulatory pathway that acts to protect the airways from allergic inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a model for water with a tunable intramolecular interaction Js, using mean-field theory and off-lattice Monte Carlo simulations. For all Js>~0, the model displays a temperature of maximum density. For a finite intramolecular interaction Js>0, our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely preempted by inevitable freezing. For J=0, the liquid-liquid critical point disappears at T=0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precise localization of extracellular matrix and cell wall components is of critical importance for multicellular organisms. Lignin is a major cell wall modification that often forms intricate subcellular patterns that are central to cellular function. Yet the mechanisms of lignin polymerization and the subcellular precision of its formation remain enigmatic. Here, we show that the Casparian strip, a lignin-based, paracellular diffusion barrier in plants, forms as a precise, median ring by the concerted action of a specific, localized NADPH oxidase, brought into proximity of localized peroxidases through the action of Casparian strip domain proteins (CASPs). Our findings in Arabidopsis provide a simple mechanistic model of how plant cells regulate lignin formation with subcellular precision. We speculate that scaffolding of NADPH oxidases to the downstream targets of the reactive oxygen species (ROS) that they produce might be a widespread mechanism to ensure specificity and subcellular precision of ROS action within the extracellular matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In addition to its anticoagulant properties, heparin has anti-inflammatory effects, the molecular and mechanistic bases of which are incompletely defined. AIMS The current studies were designed to test the hypothesis that heparin abrogates the expression or function of leucocyte-endothelial adherence molecules which are fundamental to the acute inflammatory response. Methods The effects of heparin on tumour necrosis factor alpha (TNF-¿) induced leucocyte rolling, adhesion, and migration as well as vascular permeability were assessed in rat mesenteric venules using intravital microscopy. Expression of adhesion molecules was quantitated using a double radiolabelled monoclonal antibody (mAb) binding technique in vivo (P-selectin, intercellular cell adhesion molecule type 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1)) or flow cytometry (CD11a, CD11b, and L-selectin). Ex vivo binding of heparin to neutrophils was assessed by flow cytometry. RESULTS TNF-alpha induced a significant increase in leucocyte rolling, adhesion, and migration, and vascular permeability, coincident with a significant increase in expression of P-selectin, ICAM-1, and VCAM-1. Ex vivo assessment of blood neutrophils showed significant upregulation of CD11a and CD11b and significant downregulation of L-selectin within five hours of TNF-¿ administration. Heparin pretreatment significantly attenuated leucocyte rolling, adhesion, and migration but did not affect expression of cell adhesion molecules or vascular permeability elicited by TNF-¿ administration. Binding of heparin was significantly increased on blood neutrophils obtained five hours after TNF-¿ administration. Preincubation with an anti-CD11b mAb but not with an anti-CD11a or anti-L-selectin antibody significantly diminished heparin binding ex vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wnt and Notch signaling have long been established as strongly oncogenic in the mouse mammary gland. Aberrant expression of several Wnts and other components of this pathway in human breast carcinomas has been reported, but evidence for a causative role in the human disease has been missing. Here we report that increased Wnt signaling, as achieved by ectopic expression of Wnt-1, triggers the DNA damage response (DDR) and an ensuing cascade of events resulting in tumorigenic conversion of primary human mammary epithelial cells. Wnt-1-transformed cells have high telomerase activity and compromised p53 and Rb function, grow as spheres in suspension, and in mice form tumors that closely resemble medullary carcinomas of the breast. Notch signaling is up-regulated through a mechanism involving increased expression of the Notch ligands Dll1, Dll3, and Dll4 and is required for expression of the tumorigenic phenotype. Increased Notch signaling in primary human mammary epithelial cells is sufficient to reproduce some aspects of Wnt-induced transformation. The relevance of these findings for human breast cancer is supported by the fact that expression of Wnt-1 and Wnt-4 and of established Wnt target genes, such as Axin-2 and Lef-1, as well as the Notch ligands, such as Dll3 and Dll4, is up-regulated in human breast carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canine distemper virus (CDV), a mobillivirus related to measles virus causes a chronic progressive demyelinating disease, associated with persistence of the virus in the central nervous system (CNS). CNS persistence of morbilliviruses has been associated with cell-to-cell spread, thereby limiting immune detection. The mechanism of cell-to-cell spread remains uncertain. In the present study we studied viral spread comparing a cytolytic (non-persistent) and a persistent CDV strain in cell cultures. Cytolytic CDV spread in a compact concentric manner with extensive cell fusion and destruction of the monolayer. Persistent CDV exhibited a heterogeneous cell-to-cell pattern of spread without cell fusion and 100-fold reduction of infectious viral titers in supernatants as compared to the cytolytic strain. Ultrastructurally, low infectious titers correlated with limited budding of persistent CDV as compared to the cytolytic strain, which shed large numbers of viral particles. The pattern of heterogeneous cell-to-cell viral spread can be explained by low production of infectious viral particles in only few areas of the cell membrane. In this way persistent CDV only spreads to a small proportion of the cells surrounding an infected one. Our studies suggest that both cell-to-cell spread and limited production of infectious virus are related to reduced expression of fusogenic complexes in the cell membrane. Such complexes consist of a synergistic configuration of the attachment (H) and fusion (F) proteins on the cell surface. F und H proteins exhibited a marked degree of colocalization in cytolytic CDV infection but not in persistent CDV as seen by confocal laser microscopy. In addition, analysis of CDV F protein expression using vaccinia constructs of both strains revealed an additional large fraction of uncleaved fusion protein in the persistent strain. This suggests that the paucity of active fusion complexes is due to restricted intracellular processing of the viral fusion protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To constrain the age of strike-slip shear, related granitic magmatism, and cooling along the Insubric line, 29 size fractions of monazite and xenotime were dated by the U-Pb method, and a series of 25 Rb-Sr and Ar-40/Ar-39 ages were measured on different size fractions of muscovite and biotite. The three pegmatitic intrusions analyzed truncate high-grade metamorphic mylonite gneisses of the Simplon shear zone, a major Alpine structure produced in association with dextral strike-slip movements along the southern edge of the European plate, after collision with its Adriatic indenter. Pegmatites and aplites were produced between 29 and 25 Ma in direct relation to right-lateral shear along the Insubric line, by melting of continental crust having Sr-87/Sr-86 between 0.7199 and 0.7244 at the time of melting. High-temperature dextral strike-slip shear was active at 29.2 +/- 0.2 (2 sigma) Ma, and it terminated before 26.4 +/- 0.1 Ma. During dike injection, temperatures in the country rocks of the Isorno-Orselina and Monte Rosa structural units did not exceed approximate to 500 degrees C, leading to fast initial cooling, followed by slower cooling to approximate to 350 degrees C within several million years. In one case, initial cooling to approximate to 500 degrees C was significantly delayed by about 4 m.y., with final cooling to approximate to 300 degrees C at 20-19 Ma in all units. For the period between 29 and 19 Ma, cooling of the three sample localities was non-uniform in space and time, with significant variations on the kilometre scale. These differences are most likely due to strongly varying heat flow, and/or heterogeneous distribution of unroofing rates within the continuously deforming Insubric line. If entirely ascribed to differences in unroofing, corresponding rates would vary between 0.5 and 2.5 mm/y, for a thermal gradient of 30 degrees/km.