1000 resultados para Counting 150-250 µm fraction
Resumo:
Bioturbation in marine sediments has basically two aspects of interest for palaeo-environmental studies. First, the traces left by the burrowing organisms reflect the prevailing environmental conditions at the seafloor and thus can be used to reconstruct the ecologic and palaeoceanographic situation. Traces have the advantage over other proxies of practically always being preserved in situ. Secondly, for high- resolution stratigraphy, bioturbation is a nuisance due to the stirring and mixing processes that destroy the stratigraphic record. In order to evaluate the applicability of biogenic traces as palaeoenvironmental indicators, a number of gravity cores from the Portuguese continental slope, covering the period from the last glacial to the present were investigated through X-ray radiographs. In addition, physical and chemical parameters were determined to define the environmental niche in each core interval. A number of traces could be recognized, the most important being: Thalassinoides, Planolites, Zoophycos, Chondrites, Scolicia, Palaeophycus, Phycosiphon and the generally pyritized traces Trichichnus and Mycellia. The shifts between the different ichnofabrics agree strikingly well with the variations in ocean circulation caused by the changing climate. On the upper and middle slope, variations in current intensity and oxygenation of the Mediterranean Outflow Water were responsible for shifts in the ichnofabric. Larger traces such as Planolites and Thalassinoides dominated in coarse, well oxygenated intervals, while small traces such as Chondrites and Trichichnus dominated in fine grained, poorly oxygenated intervals. In contrast, on the lower slope where calm steady sedimentation conditions prevail, changes in sedimentation rate and nutrient flux have controlled variations in the distribution of larger traces such as Planolites, Thalassinoides, and Palaeophycus. Additionally, distinct layers of abundant Chondrites correspond to Heinrich events 1, 2, and 4, and are interpreted as a response to incursions of nutrient rich, oxygen depleted Antarctic waters during phases of reduced thermohaline circulation. The results clearly show that not one single factor but a combination of several factors is necessary to explain the changes in ichnofabric. Furthermore, large variations in the extent and type of bioturbation and tiering between different settings clearly show that a more detailed knowledge of the factors governing bioturbation is necessary if we shall fully comprehend how proxy records are disturbed. A first attempt to automatize a part of the recognition and quantification of the ichnofabric was performed using the DIAna image analysis program on digitized X-ray radiographs. The results show that enhanced abundance of pyritized microburrows appears to be coupled to organic rich sediments deposited under dysoxic conditions. Coarse grained sediments inhibit the formation of pyritized burrows. However, the smallest changes in program settings controlling the grey scale threshold and the sensitivity resulted in large shifts in the number of detected burrows. Therefore, this method can only be considered to be semi-quantitative. Through AMS-^C dating of sample pairs from the Zoophycos spreiten and the surrounding host sediment, age reversals of up to 3,320 years could be demonstrated for the first time. The spreiten material is always several thousands of years younger than the surrounding host sediment. Together with detailed X-ray radiograph studies this shows that the trace maker collects the material on the seafloor, and then transports it downwards up to more than one meter in to the underlying sediment where it is deposited in distinct structures termed spreiten. This clearly shows that age reversals of several thousands of years can be expected whenever Zoophycos is unknowingly sampled. These results also render the hitherto proposed ethological models proposed for Zoophycos as largely implausible. Therefore, a combination of detritus feeding, short time caching, and hibernation possibly combined also with gardening, is suggested here as an explanation for this complicated burrow.
Resumo:
The water masses in the Florida Straits and Bahamas region are important sources for the Northern Atlantic surface ocean circulation. In this study, we analyse carbonate preservation in surface sediments located above the chemical lysocline in the Florida Straits and Bahamas region and discuss possible reasons for supralysoclinal dissolution. Calcite dissolution proxies such as the variation of the foraminiferal assemblage, Fragmentation Index, Benthic Foraminifera Index, and Resistance Index displayed a good preservation in both areas. The pteropod species Limacina inflata showed very good preservation in sediments of inter-platform channels from the Great Bahama Bank (Providence Channel, Exuma Sound) above the aragonite lysocline. Supralysoclinal aragonite dissolution, however, was observed at two water depth levels (800-1000 m and below 1500 m) in the Florida Straits. Our observations suggest that the supralysoclinal dissolution in the Florida Straits is due to the degradation of organic material. The presence of Antarctic Intermediate Water (AAIW) may be a contributing factor for the significant aragonite dissolution in 800-1000 m. The comparison of modern preservation patterns of the surface sediments with hydrographical measurements shows that the L. inflata Dissolution Index (LDX) might be an adequate proxy to reconstruct paleo-water mass conditions in an area which is highly saturated with respect to calcium carbonate.
Resumo:
We present 30 new planktonic foraminiferal census data of surface sediment samples from the South China Sea, recovered between 630 and 2883 m water depth. These new data, together with the 131 earlier published data sets from the western Pacific, are used for calibrating the SIMMAX-28 transfer function to estimate past sea-surface temperatures. This regional SIMMAX method offers a slightly better understanding of the marginal sea conditions of the South China Sea than the linear transfer function FP-12E, which is based only on open-ocean data. However, both methods are biased toward the tropical temperature regime because of the very limited data from temperate to subpolar regions. The SIMMAX formula was applied to sediment core 17940 from the northeastern South China Sea, with sedimentation rates of 20-80 cm/ka. Results revealed nearly unchanged summer temperatures around 28°C for the last 30 ky, while winter temperatures varied between 19.5°C in the last glacial maximum and 26°C during the Holocene. During Termination 1A, the winter estimates show a Younger Dryas cooling by 3°C subsequent to a temperature optimum of 24°C during the Bölling=Alleröd. Estimates of winter temperature differences between 0 and 100 m water depth document the seasonal variations in the thickness of the mixed layer and provide a new proxy for estimating past changes in the strength of the winter monsoon.
Resumo:
The Indian winter monsoon (IWM) is a key component of the seasonally changing monsoon system that affects the densely populated regions of South Asia. Cold winds originating in high northern latitudes provide a link of continental-scale Northern Hemisphere climate to the tropics. Western Disturbances (WD) associated with the IWM play a critical role for the climate and hydrology in northern India and the western Himalaya region. It is vital to understand the mechanisms and teleconnections that influence IWM variability to better predict changes in future climate. Here we present a study of regionally calibrated winter (January) temperatures and according IWM intensities, based on a planktic foraminiferal record with biennial (2.55 years) resolution. Over the last ~250 years, IWM intensities gradually weakened, based on the long-term trend of reconstructed January temperatures. Furthermore, the results indicate that IWM is connected on interannual- to decadal time scales to climate variability of the tropical and extratropical Pacific, via El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). However, our findings suggest that this relationship appeared to begin to decouple since the beginning of the 20th century. Cross-spectral analysis revealed that several distinct decadal-scale phases of colder climate and accordingly more intense winter monsoon centered at the years ~1800, ~1890 and ~1930 can be linked to changes of the North Atlantic Oscillation (NAO).
Resumo:
An abrupt global warming of 3-4°C occurred near the end of the Maastrichtian at 65.45-65.10 Ma. The environmental effects of this warm event are here documented based on stable isotopes and quantitative analysis of planktonic foraminifera at the South Atlantic DSDP Site 525A. Stable isotopes of individual species mark a rapid increase in temperature and a reduction in the vertical water mass stratification that is accompanied by a decrease in niche habitats, reduced species diversity and/or abundance, smaller species morphologies or dwarfing, and reduced photosymbiotic activity. During the warm event, the relative abundance of a large number of species decreased, including tropical-subtropical affiliated species, whereas typical mid-latitude species retained high abundances. This indicates that climate warming did not create favorable conditions for all tropical-subtropical species at mid-latitudes and did not cause a massive retreat in the local mid-latitude population. A noticeable exception is the ecological generalist Heterohelix dentata Stenestad that dominated during the cool intervals, but significantly decreased during the warm event. However, dwarfing is the most striking response to the abrupt warming and occurred in various species of different morphologies and lineages (e.g. biserial, trochospiral, keeled globotruncanids). Dwarfing is a typical reaction to environmental stress conditions and was likely the result of increased reproduction rates. Similarly, photosymbiotic activity appears to have been reduced significantly during the maximum warming, as indicated by decreased delta13C values. The foraminiferal response to climate change is thus multifaceted resulting in decreased species diversity, decreased species populations, increased competition due to reduced niche habitats, dwarfing and reduced photosymbiotic activity.