990 resultados para Coordination networks
Resumo:
In general, modern networks are analysed by taking several Key Performance Indicators (KPIs) into account, their proper balance being required in order to guarantee a desired Quality of Service (QoS), particularly, cellular wireless heterogeneous networks. A model to integrate a set of KPIs into a single one is presented, by using a Cost Function that includes these KPIs, providing for each network node a single evaluation parameter as output, and reflecting network conditions and common radio resource management strategies performance. The proposed model enables the implementation of different network management policies, by manipulating KPIs according to users' or operators' perspectives, allowing for a better QoS. Results show that different policies can in fact be established, with a different impact on the network, e.g., with median values ranging by a factor higher than two.
Resumo:
Processes are a central entity in enterprise collaboration. Collaborative processes need to be executed and coordinated in a distributed Computational platform where computers are connected through heterogeneous networks and systems. Life cycle management of such collaborative processes requires a framework able to handle their diversity based on different computational and communication requirements. This paper proposes a rational for such framework, points out key requirements and proposes it strategy for a supporting technological infrastructure. Beyond the portability of collaborative process definitions among different technological bindings, a framework to handle different life cycle phases of those definitions is presented and discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.
Resumo:
55th European Regional Science Association Congress, Lisbon, Portugal (25-28 August 2015).
Resumo:
For the past years wireless sensor networks (WSNs) have been coined as one of the most promising technologies for supporting a wide range of applications. However, outside the research community, few are the people who know what they are and what they can offer. Even fewer are the ones that have seen these networks used in real world applications. The main obstacle for the proliferation of these networks is energy, or the lack of it. Even though renewable energy sources are always present in the networks environment, designing devices that can efficiently scavenge that energy in order to sustain the operation of these networks is still an open challenge. Energy scavenging, along with energy efficiency and energy conservation, are the current available means to sustain the operation of these networks, and can all be framed within the broader concept of “Energetic Sustainability”. A comprehensive study of the several issues related to the energetic sustainability of WSNs is presented in this thesis, with a special focus in today’s applicable energy harvesting techniques and devices, and in the energy consumption of commercially available WSN hardware platforms. This work allows the understanding of the different energy concepts involving WSNs and the evaluation of the presented energy harvesting techniques for sustaining wireless sensor nodes. This survey is supported by a novel experimental analysis of the energy consumption of the most widespread commercially available WSN hardware platforms.
Resumo:
Micro- and nano-patterned materials are of great importance for the design of new nanoscale electronic, optical and mechanical devices, ranging from sensors to displays. A prospective system that can support a designed functionality is elastomeric polyurethane thin films with nano- or micromodulated surface structures ("wrinkles"). These wrinkles can be induced on different lengthscales by mechanically stretching the films, without the need for any sophisticated lithographic techniques. In the present article we focus on the experimental control of the wrinkling process. A simple model for wrinkle formation is also discussed, and some preliminary results reported. Hierarchical assembly of these tunable structures paves the way for the development of a new class of materials with a wide range of applications, from electronics to biomedicine.
Resumo:
Conferência - 16th International Symposium on Wireless Personal Multimedia Communications (WPMC)- Jun 24-27, 2013
Resumo:
Objective: To analyze the relation between contralesional and ipsilesional limbs in subjects with stroke during step-to-step transition of walking. Design: Observational, transversal, analytical study with a convenience sample. Setting: Physical medicine and rehabilitation clinic. Participants: Subjects (nZ16) with poststroke hemiparesis with the ability to walk independently and healthy controls (nZ22). Interventions: Not applicable. Main Outcome Measures: Bilateral lower limbs electromyographic activity of the soleus (SOL), gastrocnemius medialis, tibialis anterior, biceps femoris, rectus femoris, and vastus medialis (VM) muscles and the ground reaction force were analyzed during double-support and terminal stance phases of gait. Results: The propulsive impulse of the contralesional trailing limb was negatively correlated with the braking impulse of the leading limb during double support (rZ .639, PZ.01). A moderate functional relation was observed between thigh muscles (rZ .529, PZ.035), and a strong and moderate dysfunctional relation was found between the plantar flexors of the ipsilesional limb and the vastus medialis of the contralesional limb, respectively (SOL-VM, rZ .80, P<.001; gastrocnemius medialis-VM, rZ .655, PZ.002). Also, a functional moderate negative correlation was found between the SOL and rectus femoris muscles of the ipsilesional limb during terminal stance and between the SOL (rZ .506, PZ.046) and VM (rZ .518, PZ.04) muscles of the contralesional limb during loading response, respectively. The trailing limb relative impulse contribution of the contralesional limb was lower than the ipsilesional limb of subjects with stroke (PZ.02) and lower than the relative impulse contribution of the healthy limb (PZ.008) during double support. Conclusions: The findings obtained suggest that the lower performance of the contralesional limb in forward propulsion during gait is related not only to contralateral supraspinal damage but also to a dysfunctional influence of the ipsilesional limb.
Resumo:
E-Learning frameworks are conceptual tools to organize networks of elearning services. Most frameworks cover areas that go beyond the scope of e-learning, from course to financial management, and neglects the typical activities in everyday life of teachers and students at schools such as the creation, delivery, resolution and evaluation of assignments. This paper presents the Ensemble framework - an e-learning framework exclusively focused on the teaching-learning process through the coordination of pedagogical services. The framework presents an abstract data, integration and evaluation model based on content and communications specifications. These specifications must base the implementation of networks in specialized domains with complex evaluations. In this paper we specialize the framework for two domains with complex evaluation: computer programming and computer-aided design (CAD). For each domain we highlight two Ensemble hotspots: data and evaluations procedures. In the former we formally describe the exercise and present possible extensions. In the latter, we describe the automatic evaluation procedures.
Resumo:
Managing programming exercises require several heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. These tools would be too specific to incorporate in an e-Learning platform. Even if they could be provided as pluggable components, the burden of maintaining them would be prohibitive to institutions with few courses in those domains. This work presents a standard based approach for the coordination of a network of e-Learning systems participating on the automatic evaluation of programming exercises. The proposed approach uses a pivot component to orchestrate the interaction among all the systems using communication standards. This approach was validated through its effective use on classroom and we present some preliminary results.
Resumo:
Low-rate low-power consumption and low-cost communication are the key points that lead to the specification of the IEEE 802.15.4 standard. This paper overviews the technical features of the physical layer and the medium access control sublayer mechanisms of the IEEE 802.15.4 protocol that are most relevant for wireless sensor network applications. We also discuss the ability of IEEE 802.15.4 to fulfil the requirements of wireless sensor network applications.
Resumo:
Wireless Sensor Networks (WSNs) have been attracting increasing interests in the development of a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in Wireless Sensor Networks differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols and mechanisms. In this Technical Report, we present a survey on communication protocols for WSNs with a particular emphasis on the lower protocol layers. We give a particular focus to the MAC (Medium Access Control) sub-layer, since it has a prominent influence on some relevant requirements that must be satisfied by WSN protocols, such as energy consumption, time performance and scalability. We overview some relevant MAC protocol solutions and discuss how they tackle the trade-off between the referred requirements.
Resumo:
In previous works we have proposed a hybrid wired/wireless PROFIBUS solution where the interconnection between the heterogeneous media was accomplished through bridge-like devices with wireless stations being able to move between different wireless cells. Additionally, we had also proposed a worst-case timing analysis assuming that stations were stationary. In this paper we advance these previous works by proposing a worst-case timing analysis for the system’s message streams considering the effect of inter-cell mobility.
Resumo:
The development of new products or processes involves the creation, re-creation and integration of conceptual models from the related scientific and technical domains. Particularly, in the context of collaborative networks of organisations (CNO) (e.g. a multi-partner, international project) such developments can be seriously hindered by conceptual misunderstandings and misalignments, resulting from participants with different backgrounds or organisational cultures, for example. The research described in this article addresses this problem by proposing a method and the tools to support the collaborative development of shared conceptualisations in the context of a collaborative network of organisations. The theoretical model is based on a socio-semantic perspective, while the method is inspired by the conceptual integration theory from the cognitive semantics field. The modelling environment is built upon a semantic wiki platform. The majority of the article is devoted to developing an informal ontology in the context of a European R&D project, studied using action research. The case study results validated the logical structure of the method and showed the utility of the method.
Resumo:
Advances in networking and information technologies are transforming factory-floor communication systems into a mainstream activity within industrial automation. It is now recognized that future industrial computer systems will be intimately tied to real-time computing and to communication technologies. For this vision to succeed, complex heterogeneous factory-floor communication networks (including mobile/wireless components) need to function in a predictable, flawless, efficient and interoperable way. In this paper we re-visit the issue of supporting real-time communications in hybrid wired/wireless fieldbus-based networks, bringing into it some experimental results obtained in the framework of the RFieldbus ISEP pilot.