986 resultados para Conway-Maxwell Poisson (COM-Poisson) distribution


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of proportions is a common topic in many fields of study. The standard beta distribution or the inflated beta distribution may be a reasonable choice to fit a proportion in most situations. However, they do not fit well variables that do not assume values in the open interval (0, c), 0 < c < 1. For these variables, the authors introduce the truncated inflated beta distribution (TBEINF). This proposed distribution is a mixture of the beta distribution bounded in the open interval (c, 1) and the trinomial distribution. The authors present the moments of the distribution, its scoring vector, and Fisher information matrix, and discuss estimation of its parameters. The properties of the suggested estimators are studied using Monte Carlo simulation. In addition, the authors present an application of the TBEINF distribution for unemployment insurance data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We prove that any two Poisson dependent elements in a free Poisson algebra and a free Poisson field of characteristic zero are algebraically dependent, thus answering positively a question from Makar-Limanov and Umirbaev (2007) [8]. We apply this result to give a new proof of the tameness of automorphisms for free Poisson algebras of rank two (see Makar-Limanov and Umirbaev (2011) [9], Makar-Limanov et al. (2009) [10]). (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La tesi consiste nella ricerca di un candidato ideale per la soluzione del problema di Dirichlet. Vengono affrontati gli argomenti in maniera graduale, partendo dalle funzioni armoniche e le loro relative proprietà, passando per le identità e le formule di rappresentazione di Green, per finire nell'analisi del problema sopra citato, mediante i risultati precedentemente ottenuti, per concludere trovando la formula integrale di Poisson come soluzione ma anche come formula generale per sviluppi in vari ambiti.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il tema centrale di questa tesi è lo studio del problema di Dirichlet per il Laplaciano in R^2 usando le serie di Fourier. Il problema di Dirichlet per il Laplaciano consiste nel determinare una funzione f armonica e regolare in un dominio limitato D quando sono noti i valori che f assume sul suo bordo. Ammette una sola soluzione, ma non esistono criteri generali per ricavarla. In questa tesi si mostra come la formula integrale di Poisson, sotto determinate condizioni, risolva il problema di Dirichlet in R^2 e in R^n.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes Poisson log-linear multilevel models to investigate population variability in sleep state transition rates. We specifically propose a Bayesian Poisson regression model that is more flexible, scalable to larger studies, and easily fit than other attempts in the literature. We further use hierarchical random effects to account for pairings of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias is of epidemiologic importance. We estimate essentially non-parametric piecewise constant hazards and smooth them, and allow for time varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming piecewise constant hazards. This relationship allows us to synthesize two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed.