940 resultados para Computer games
Resumo:
This paper describes a series of design games, specifically aimed at exploring shifts in human agency in order to inform the design of context-aware applications. The games focused on understanding information handling issues in dental practice with participants from a university dental school playing an active role in the activities. Participatory design activities help participants to reveal potential implicit technical resources that can be presented explicitly in technologies in order to assist humans in managing their interactions with and amidst technical systems gracefully.
Resumo:
The European Leonardo da Vinci Transfer of Innovation project Teacher training to improve attractiveness and quality of management education through the simulation tool Emerald Forest which emphases on using the computer simulation tool for increasing attractiveness of teaching and learning in economics is presented in this paper. The observation of using computer systems and especially serious games in education is provided as well. Education is not the filling of a pail, but the lighting of a fire - William Butler Yeats
Resumo:
Computer Game Playing has been an active area of research since Samuels first Checkers player (Samuel 1959). Recently interest beyond the classic games of Chess and Checkers has led to competitions such as the General Game Playing competition, in which players have no beforehand knowledge of the games they are to play, and the Computer Poker Competition which force players to reason about imperfect information under conditions of uncertainty. The purpose of this dissertation is to explore the area of General Game Playing both specifically and generally. On the specific side, we describe the design and implementation of our General Game Playing system OGRE. This system includes an innovative method for feature extraction that helped it to achieve second and fourth place in two international General Game Playing competitions. On the more general side, we also introduce the Regular Game Language, which goes beyond current works to provide support for both stochastic and imperfect information games as well as the more traditional games.
Resumo:
Computer Game Playing has been an active area of research since Samuels first Checkers player (Samuel 1959). Recently interest beyond the classic games of Chess and Checkers has led to competitions such as the General Game Playing competition, in which players have no beforehand knowledge of the games they are to play, and the Computer Poker Competition which force players to reason about imperfect information under conditions of uncertainty. The purpose of this dissertation is to explore the area of General Game Playing both specifically and generally. On the specific side, we describe the design and implementation of our General Game Playing system OGRE. This system includes an innovative method for feature extraction that helped it to achieve second and fourth place in two international General Game Playing competitions. On the more general side, we also introduce the Regular Game Language, which goes beyond current works to provide support for both stochastic and imperfect information games as well as the more traditional games.
Resumo:
Learning Analytics is an emerging field focused on analyzing learners interactions with educational content. One of the key open issues in learning analytics is the standardization of the data collected. This is a particularly challenging issue in serious games, which generate a diverse range of data. This paper reviews the current state of learning analytics, data standards and serious games, studying how serious games are tracking the interactions from their players and the metrics that can be distilled from them. Based on this review, we propose an interaction model that establishes a basis for applying Learning Analytics into serious games. This paper then analyzes the current standards and specifications used in the field. Finally, it presents an implementation of the model with one of the most promising specifications: Experience API (xAPI). The Experience API relies on Communities of Practice developing profiles that cover different use cases in specific domains. This paper presents the Serious Games xAPI Profile: a profile developed to align with the most common use cases in the serious games domain. The profile is applied to a case study (a demo game), which explores the technical practicalities of standardizing data acquisition in serious games. In summary, the paper presents a new interaction model to track serious games and their implementation with the xAPI specification.
Resumo:
In this extended abstract, we discuss recent research at Worcester into the inclusion of AI into Serious Games. Serious Games research intends to harness the power of computer game technology to produce educational and training materials. We prefer the name Immersive Environments (IEs) since this emphasises the human psychological dimension. Creation of compelling and convincing learning software requires a rich engagement of the learner, and a convincing learning experience. We believe that various aspects of the AI tradition can inform the production of such learning.
Resumo:
Conventional taught learning practices often experience difficulties in keeping students motivated and engaged. Video games, however, are very successful at sustaining high levels of motivation and engagement through a set of tasks for hours without apparent loss of focus. In addition, gamers solve complex problems within a gaming environment without feeling fatigue or frustration, as they would typically do with a comparable learning task. Based on this notion, the academic community is keen on exploring methods that can deliver deep learner engagement and has shown increased interest in adopting gamification the integration of gaming elements, mechanics, and frameworks into non-game situations and scenarios as a means to increase student engagement and improve information retention. Its effectiveness when applied to education has been debatable though, as attempts have generally been restricted to one-dimensional approaches such as transposing a trivial reward system onto existing teaching materials and/or assessments. Nevertheless, a gamified, multi-dimensional, problem-based learning approach can yield improved results even when applied to a very complex and traditionally dry task like the teaching of computer programming, as shown in this paper. The presented quasi-experimental study used a combination of instructor feedback, real time sequence of scored quizzes, and live coding to deliver a fully interactive learning experience. More specifically, the Kahoot! Classroom Response System (CRS), the classroom version of the TV game show Who Wants To Be A Millionaire?, and Codecademys interactive platform formed the basis for a learning model which was applied to an entry-level Python programming course. Students were thus allowed to experience multiple interlocking methods similar to those commonly found in a top quality game experience. To assess gamifications impact on learning, empirical data from the gamified group were compared to those from a control group who was taught through a traditional learning approach, similar to the one which had been used during previous cohorts. Despite this being a relatively small-scale study, the results and findings for a number of key metrics, including attendance, downloading of course material, and final grades, were encouraging and proved that the gamified approach was motivating and enriching for both students and instructors.
Resumo:
We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokmon. Our results apply to generalized versions of Super Mario Bros.1-3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Metroid games; and all Pokmon role-playing games. In addition, we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of Zelda games.
Resumo:
Alternate Reality Game (ARG) represent a new genre of transmedia practice where players hunt for scattered clues, make sense of disparate information, and solve puzzles to advance an ever-evolving storyline. Players participate in ARGs using multiple communications technologies, ranging from print materials to mobile devices. However, many interaction design challenges must be addressed to weave these everyday communication tools together into an immersive, participatory experience. Transmedia design is not an everyday process. Designers must create and connect story bits across multiple media (video, audio, text) and multiple platforms (phones, computers, physical spaces). Furthermore, they must engage with players of varying skill levels. Few studies to-date have explored the design process of ARGs in learning contexts. Fewer still have focused on challenges involved in designing for youth (13-17 years old). In this study, I explore the process of designing ARGs as vehicles for promoting information literacy and participatory culture for adolescents (13-17 years old). Two ARG design scenarios, distinguished by target learning environment (formal and informal context) and target audience (adolescents), comprise the two cases that I examine. Through my analysis of these two design cases, I articulate several unique challenges faced by designers who create interactive, transmedia stories for and with youth. Drawing from these design challenges, I derive a repertoire of design strategies that future designers and researchers may use to create and implement ARGs for teens in learning contexts. In particular, I propose a narrative design framework that allows for the categorization of ARGs as storytelling constructs that lie along a continuum of participation and interaction. The framework can serve as an analytic tool for researchers and a guide for designers. In addition, I establish a framework of social roles that designers may employ to craft transmedia narratives before live launch and to promote and scaffold player participation after play begins. Overall, the contributions of my study include theoretical insights that may advance our understanding of narrative design and analysis as well as more practical design implications for designers and practitioners seeking to incorporate transmedia features into learning experiences that target youth.
Resumo:
Does a brain store thoughts and memories the way a computer saves its files? How can a single hit or a fall erase all those memories? Brain Mapping and traumatic brain injuries (TBIs) have become widely researched fields today. Many researchers have been studying TBIs caused to adult American football players however youth athletes have been rarely considered for these studies, contradicting to the fact that American football enrolls highest number of collegiate and high-school children than adults. This research is an attempt to contribute to the field of youth TBIs. Earlier studies have related head kinematics (linear and angular accelerations) to TBIs. However, fewer studies have dealt with brain kinetics (impact pressures and stresses) occurring during head-on collisions. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop tests were conducted for linear impact accelerations and the Head Impact Contact Pressures (HICP) calculated from them were applied to a validated FE model. The results showed lateral region of the head as the most vulnerable region to damage from any drop height or impact distance followed by posterior region. The TBI tolerance levels in terms of Von-Mises and Maximum Principal Stresses deduced for lateral impact were 30 MPa and 18 MPa respectively. These levels were corresponding to 2.625 feet drop height. The drop heights beyond this value will result in TBI causing stress concentrations in human head without any detectable structural damage to the brain tissue. This data can be utilized for designing helmets that provide cushioning to brain along with providing a resistance to shear.
Resumo:
The study was developed as a teacher-research project during initial teacher education Masters Degree of Early Childhood and Primary Education, in Portugal. It analysed the interactions between children of 3 to 6 years old, during the use of the computer as a free choice activity, confronting situations between peers of the same age and situations between peers of different ages. The focus of the analysis was the collaborative interactions. This was a qualitative study. Children could choose the computer, amongst other interest areas, and work for around an hour in pairs. In the computer, children used mainly educational games. During four weeks, the interactions between the pairs were audio recorded. Field notes and informal interviews to the children were also used to collect data. Eleven children were involved in the study with ages ranging from 3 to 6 years old. Baseline data on childrens basic computer proficiency was collected using the Individualized Computer Proficiency Checklist (ICPC) by Hyun. The recorded interactions were analysed using the types of talk offered by Scrimshaw and Perkins and Wegerif and Scrimshaw: cumulative talk, exploratory talk, disputational talk, and tutorial talk. This framework was already used in a study in an early childhood education context in Portugal by Amante. The results reveal differences in computer use and characterize the observed interactions. Seven different pairs of children's interactions were analysed. More than a third of the interactions were cumulative talk, followed by exploratory talk, tutorial talk and disputational talk. Comparing same and mixed age pairs, we observed that cumulative talk is the more present interaction, but in same age pairs this is followed by exploratory talk whereas in the mixed age pairs it is tutorial talk that has the second largest percentage. The pairs formed by the children were very asymmetrical in terms of age and computer proficiency. This lead to the more tutorial interactions, where one children showed the other or directed him/her on how to play. The results show that collaboration is present during the use of a computer area in early childhood education. The free choice of the children means the adults can only suggest pairing suited to specific interactions between the children. Another way to support children in more exploratory talk interactions could be by discussing the way the older children can help the younger ones beyond directing or correcting their work.