976 resultados para Comparative genomic hybridisation
Resumo:
Cytochrome P450 enzymes (CYP450s) represent a superfamily of haem-thiolate proteins. CYP450s are most abundant in the liver, a major site of drug metabolism, and play key roles in the metabolism of a variety of substrates, including drugs and environmental contaminants. Interaction of two or more different drugs with the same enzyme can account for adverse effects and failure of therapy. Human CYP3A4 metabolizes about 50% of all known drugs, but little is known about the orthologous CYP450s in horses. We report here the genomic organization of the equine CYP3A gene cluster as well as a comparative analysis with the human CYP3A gene cluster. The equine CYP450 genes of the 3A family are located on ECA 13 between 6.97-7.53 Mb, in a region syntenic to HSA 7 99.05-99.35 Mb. Seven potential, closely linked equine CYP3A genes were found, in contrast to only four genes in the human genome. RNA was isolated from an equine liver sample, and the approximately 1.5-kb coding sequence of six CYP3A genes could be amplified by RT-PCR. Sequencing of the RT-PCR products revealed numerous hitherto unknown single nucleotide polymorphisms (SNPs) in these six CYP3A genes, and one 6-bp deletion compared to the reference sequence (EquCab2.0). The presence of the variants was confirmed in a sample of genomic DNA from the same horse. In conclusion, orthologous genes for the CYP3A family exist in horses, but their number differs from those of the human CYP3A gene family. CYP450 genes of the same family show high homology within and between mammalian species, but can be highly polymorphic.
Resumo:
We have cloned and sequenced a 10.22-kb fragment of the genomic locus of the porcine tumor necrosis factor-encoding genes, TNF-alpha and TNF-beta. A liver genomic DNA library, partially digested with Sau3AI, was cloned into the phage lambda EMBL4 and screened with a porcine TNF-alpha cDNA probe. Analysis showed that both the TNF-alpha and TNF-beta genes were present on the cloned fragment. In addition, the cloned fragment contained about 2 kb of repetitive sequences 5' to the TNF-beta gene. The TNF genes are arranged in a tandem repeat, as is the case for the human, mouse and rabbit TNF genes. The comparison of both genes with their human homologues displayed a considerable degree of conservation (80%), suggesting an equal evolution rate.
Resumo:
The bovine RPCI-42 BAC library was screened to construct a sequence-ready ~4 Mb single contig of 92 BAC clones on BTA 1q12. The contig covers the region between the genes KRTAP8P1 and CLIC6. This genomic segment in cattle is of special interest as it contains the dominant gene responsible for the hornless or polled phenotype in cattle. The construction of the BAC contig was initiated by screening the bovine BAC library with heterologous cDNA probes derived from 12 human genes of the syntenic region on HSA 21q22. Contig building was facilitated by BAC end sequencing and chromosome walking. During the construction of the contig, 165 BAC end sequences and 109 single-copy STS markers were generated. For comparative mapping of 25 HSA 21q22 genes, genomic PCR primers were designed from bovine EST sequences and the gene-associated STSs mapped on the contig. Furthermore, bovine BAC end sequence comparisons against the human genome sequence revealed significant matches to HSA 21q22 and allowed the in silico mapping of two new genes in cattle. In total, 31 orthologues of human genes located on HSA 21q22 were directly mapped within the bovine BAC contig, of which 16 genes have been cloned and mapped for the first time in cattle. In contrast to the existing comparative bovine-human RH maps of this region, these results provide a better alignment and reveal a completely conserved gene order in this 4 Mb segment between cattle, human and mouse. The mapping of known polled linked BTA 1q12 microsatellite markers allowed the integration of the physical contig map with existing linkage maps of this region and also determined the exact order of these markers for the first time. Our physical map and transcript map may be useful for positional cloning of the putative polled gene in cattle.
Resumo:
Genetic mapping of wheat, maize, and rice and other grass species with common DNA probes has revealed remarkable conservation of gene content and gene order over the 60 million years of radiation of Poaceae. The linear organization of genes in some nine different genomes differing in basic chromosome number from 5 to 12 and nuclear DNA amount from 400 to 6,000 Mb, can be described in terms of only 25 “rice linkage blocks.” The extent to which this intergenomic colinearity is confounded at the micro level by gene duplication and micro-rearrangements is still an open question. Nevertheless, it is clear that the elucidation of the organization of the economically important grasses with larger genomes, such as maize (2n = 10, 4,500 Mb DNA), will, to a greater or lesser extent, be predicted from sequence analysis of smaller genomes such as rice, with only 400 Mb, which in turn may be greatly aided by knowledge of the entire sequence of Arabidopsis, which may be available as soon as the turn of the century. Comparative genetics will provide the key to unlock the genomic secrets of crop plants with bigger genomes than Homo sapiens.
Resumo:
Olfactory receptor (OR) genes represent ≈1% of genomic coding sequence in mammals, and these genes are clustered on multiple chromosomes in both the mouse and human genomes. We have taken a comparative genomics approach to identify features that may be involved in the dynamic evolution of this gene family and in the transcriptional control that results in a single OR gene expressed per olfactory neuron. We sequenced ≈350 kb of the murine P2 OR cluster and used synteny, gene linkage, and phylogenetic analysis to identify and sequence ≈111 kb of an orthologous cluster in the human genome. In total, 18 mouse and 8 human OR genes were identified, including 7 orthologs that appear to be functional in both species. Noncoding homology is evident between orthologs and generally is confined within the transcriptional unit. We find no evidence for common regulatory features shared among paralogs, and promoter regions generally do not contain strong promoter motifs. We discuss these observations, as well as OR clustering, in the context of evolutionary expansion and transcriptional regulation of OR repertoires.
Resumo:
PR-39 is a porcine 39-aa peptide antibiotic composed of 49% proline and 24% arginine, with an activity against Gram-negative bacteria comparable to that of tetracycline. In Escherichia coli, it inhibits DNA and protein synthesis. PR-39 was originally isolated from pig small intestine, but subsequent cDNA cloning showed that the gene is expressed in the bone marrow. The open reading frame of the clone showed that PR-39 is made as 173-aa precursor whose proregion belongs to the cathelin family. The PR39 gene, which is rather compact and spans only 1784 bp has now been sequenced. The coding information is split into four exons. The first exon contains the signal sequence of 29 residues and the first 37 residues of the cathelin propart. Exons 2 and 3 contain only cathelin information, while exon 4 codes for the four C-terminal cathelin residues and the mature PR-39 peptide extended by three residues. The sequenced upstream region (1183 bp) contains four potential recognition sites for NF-IL6 and three for APRF, transcription factors known to regulate genes for both cytokines and acute phase response factors. Genomic hybridizations revealed a fairly high level of restriction fragment length polymorphism and indicated that there are at least two copies of the PR39 gene in the pig genome. PR39 was mapped to pig chromosome 13 by linkage and in situ hybridization mapping. The gene for the human peptide antibiotic FALL-39 (also a member of the cathelin family) was mapped to human chromosome 3, which is homologous to pig chromosome 13.
Resumo:
The C2 domain is one of the most frequent and widely distributed calcium-binding motifs. Its structure comprises an eight-stranded beta-sandwich with two structural types as if the result of a circular permutation. Combining sequence, structural and modelling information, we have explored, at different levels of granularity, the functional characteristics of several families of C2 domains. At the coarsest level,the similarity correlates with key structural determinants of the C2 domain fold and, at the finest level, with the domain architecture of the proteins containing them, highlighting the functional diversity between the various subfamilies. The functional diversity appears as different conserved surface patches throughout this common fold. In some cases, these patches are related to substrate-binding sites whereas in others they correspond to interfaces of presumably permanent interaction between other domains within the same polypeptide chain. For those related to substrate-binding sites, the predictions overlap with biochemical data in addition to providing some novel observations. For those acting as protein-protein interfaces' our modelling analysis suggests that slight variations between families are a result of not only complementary adaptations in the interfaces involved but also different domain architecture. In the light of the sequence and structural genomic projects, the work presented here shows that modelling approaches along with careful sub-typing of protein families will be a powerful combination for a broader coverage in proteomics. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
One of the hallmarks of bacterial survival is their ability to adapt rapidly to changing environmental conditions. Niche adaptation is a response to the signals received that are relayed, often to regulators that modulate gene expression. In the post-genomic era, DNA microarrays are used to study the dynamics of gene expression on a global scale. Numerous studies have used Pseudomonas aeruginosa--a Gram-negative environmental and opportunistic human pathogenic bacterium--as the model organism in whole-genome transcriptome analysis. This paper reviews the transcriptome studies that have led to immense advances in our understanding of the biology of this intractable human pathogen. Comparative analysis of 23 P. aeruginosa transcriptome studies has led to the identification of a unique set of genes that are signal specific and a core set that is differentially regulated. The 303 genes in the core set are involved in bacterial homeostasis, making them attractive therapeutic targets.
Resumo:
The electrochemistry of homoleptic substituted phthalocyaninato rare earth double-decker complexes M(TBPc)2 and M(OOPc)2 [M = Y, La...Lu except Pm; H2TBPc = 3(4),12(13),21(22),30(31)-tetra-tert-butylphthalocyanine, H2OOPc = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] has been comparatively studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). Two quasi-reversible one-electron oxidations and three or four quasi-reversible one-electron reductions have been revealed for these neutral double-deckers of two series of substituted complexes, respectively. For comparison, unsubstituted bis(phthalocyaninato) rare earth analogues M(Pc)2 (M = Y, La...Lu except Pm; H2Pc = phthalocyanine) have also been electrochemically investigated. Two quasi-reversible one-electron oxidations and up to five quasi-reversible one-electron reductions have been revealed for these neutral double-decker compounds. The three bis(phthalocyaninato)cerium compounds display one cerium-centered redox wave between the first ligand-based oxidation and reduction. The half-wave potentials of the first and second oxidations and first reduction for double-deckers of the tervalent rare earths depend on the size of the metal center. The difference between the redox potentials of the second and third reductions for MIII(Pc)2, which represents the potential difference between the first oxidation and first reduction of [MIII(Pc)2]−, lies in the range 1.08−1.37 V and also gradually diminishes along with the lanthanide contraction, indicating enhanced π−π interactions in the double-deckers connected by the smaller, lanthanides. This corresponds well with the red-shift of the lowest energy band observed in the electronic absorption spectra of reduced double-decker [MIII(Pc′)2]− (Pc′ = Pc, TBPc, OOPc).
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.